Epistemology
Introduction E9F5FC Questions FFFFC0 Software |
Abelian groups For Abelian groups, the commutator is 0. Circle group The circle group consists of the rotations in a circle. {$\mathrm{SO}(2)$} represents them as {$2 \times 2$} real matrices given in terms of sine and cosine of an angle theta. \begin{pmatrix} \mathrm{cos\,\theta} & -\mathrm{sin\,\theta} \\ \mathrm{sin\,\theta} & \mathrm{cos\,\theta} \end{pmatrix} Then the determinant is {$1$} regardless of angle. It gives the length of the radius of the unit circle. Reflections are given by: \begin{pmatrix} \mathrm{cos\,2\theta} & \mathrm{sin\,2\theta} \\ \mathrm{sin\,2\theta} & -\mathrm{cos\,2\theta} \end{pmatrix} {$\mathrm{U}(1)$} represents rotations as {$1 \times 1$} matrices in a complex number {$e^{i\theta}$}. Then the determinant is {$1$} only when {$\theta = 0$}. Thus {$\mathrm{SU}(1)$} is the trivial group. Complex conjugation is reflection about the {$x$} axis. Readings Wikipedia |