Epistemology
Introduction E9F5FC Questions FFFFC0 Software |
Split-Complex Numbers As Clifford Algebra, Direct Sum and Matrix Algebra Will relate
{$\begin{pmatrix} x & y\\ y & x \end{pmatrix}$} {$\begin{pmatrix} x+y & 0\\ 0 & x-y \end{pmatrix}$} {$\begin{pmatrix} \frac{a}{2} & \frac{a}{2} & 0 & 0 \\ \frac{a}{2} & \frac{a}{2} & 0 & 0 \\ 0 & 0 & \frac{b}{2} & \frac{-b}{2} \\ 0 & 0 & \frac{-b}{2} & \frac{b}{2} \end{pmatrix}$} Starting point Real numbers {$x\in\mathbb{R}$} are a field. Question: What are dimensions? What is the relationship between dimensions? How to extend the real numbers? {$x\in\mathbb{R}^n$} dimension {$n$} Vector! Focus on two dimensions. {$(x_1,y_1)+(x_2,y_2)=(x_1+x_2,y_1+y_2)$} Vector addition is straightforward. Group which is commutative, abelian. Example: Answer is amount and unit. Add like units. Multiplying vector by a scalar is straightforward. Scaling. Vector space Multiply answer by amount. {$\lambda(x_1,y_1) = (\lambda x_1,\lambda y_1)$} Multiplying vectors becomes interesting! ring or algebra What does it mean to multiply units? {$(x_1,y_1)(x_2,y_2)=?$} Definition Split-complex number {$z=x+yj$} where {$x,y\in\mathbb{R}$} and hyperbolic unit {$j^2=1$}
See the synonyms. We can also write {$z=x+yj$} as {$z=x+jy$}. We can think of it as {$z=x\mathbf{1}+y\mathbf{j}$}. Compare with... Complex numbers {$z=x+yi$} where {$x,y\in\mathbb{R}$} and imaginary unit {$i^2=-1$} Dual numbers {$z=x+y\varepsilon$} where {$x,y\in\mathbb{R}$} and {$\varepsilon^2=0$} with {$\varepsilon\neq 0$} Compare with... Split-quaternions {$Cl_{1,1}(\mathbb{R})\cong M_2(\mathbb{R})$}, Split-octonions, Split-biquaternions {$Cl_{0,3}(\mathbb{R})\cong \mathbb{H}\oplus\mathbb{H}$} Geometry Compare split-complex numbers multiplication by j (reflection), complex numbers multiplication by i (rotation), dual numbers multiplication by {$\varepsilon$} (rotation and projection). In each case, given point (a,b), the a rotates 90 degrees but the b rotates 90, -90 or 0, accordingly. Split-complex numbers change the definition of a and b by swapping them. Goal Philosophical question: How does the mind add one or more mathematical dimensions? mental perspectives? choices? Challenge: Understand Bott periodicity! We want to go back and forth between three ways of looking at this:
Dale Husemoller. Fiber Bundles. Clifford Algebra {$Cl_{1,0}(\mathbb{R})$} All three number systems can be thought of as Clifford algebras. Dual numbers are an exterior algebra Express with matrices: {$\epsilon_1 (u + v\epsilon_1)= (v + u\epsilon_1)$} {$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} v \\ u \end{pmatrix}$} {$1(u + v\epsilon_1)= (u + v\epsilon_1)$} {$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \\ v \end{pmatrix}$} Putting this together {$(x + y\epsilon_1)(u + v\epsilon_1)= (xu + yv) + (xv + yu)\epsilon_1$} {$\begin{pmatrix} x & y \\ y & x \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} xu + yv \\ xv + yu \end{pmatrix}$} How do we know whether this is the only matrix expression? And how do we find all the others? Direct Sum: {$\mathbb{R}\oplus\mathbb{R}$} Direct Sum Example: [5 hours + 43 minutes] + [2 hours + 12 minutes] = [7 hours + 55 minutes] {$(a,b)+(c,d)=(a+c,b+d)$} Zero looks like {$(0,0)$} as in {$(a,b)+(0,0)=(a,b)$} Multiplication by a scalar {$\lambda (a,b)=(\lambda a, \lambda b)$} With product defined this way, this direct sum is actually a product in category theory. {$(a,b)(c,d)=(ac,bd)$} Identity looks like {$(1,1)$} as in {$(a,b)(1,1)=(a,b)=(1,1)(a,b)$} Simple modules of {$\mathbb{R}\oplus\mathbb{R}$} {$\mathbb{R}\oplus\mathbb{R}$} has two simple modules, {$C_1$} and {$C_2$}. {$C_1$} has generator {$c_1$} where {$(a,b) \cdot c_1 = ac_1$} {$C_2$} has generator {$c_2$} where {$(a,b) \cdot c_2 = bc_2$} Thank you to John Baez at the Category Zulip Chat! We need to show that these are abelian groups and that they satisfy the rules for modules, namely, given {$(a_1,b_1),(a_2,b_2)\in\mathbb{R}\oplus\mathbb{R}$} and {$m_1,m_2\in M$}, we have:
We want to show that every element of {$C_1$} has the form {$rc_1$}, where {$r\in\mathbb{R}$}, and likewise, every element of {$C_2$} has the form {$rc_2$}. Note that given two elements {$r_1c_1$} and {$r_2c_1$}, addition and scalar multiplication likewise yield elements of that form. For example, for the module {$(a,b) \cdot c = ac$} we have:
Since every element has the form {$rc_1$}, it is straightforward to show they satisfy the rules for abelian groups, with the zero element {$0=0c_1$}, inverses {$-rc_1$}, well-definedness of {$r_1c_1 + r_2c_1 = (r_1+r_2)c_1$}, the associative rule {$r_1c_1+(r_2c_1 + r_3c_1)=(r_1c_1+r_2c_1)+r_3c_1$} and commutativity {$r_1c_1 + r_2c_1 = r_2c_1 + r_1c_1$}. This for {$C_1$} and similarly for {$C_2$}. Note that these modules are simple. For example, suppose {$C_1$} had a nontrivial submodule {$D$}. Then there would have to be elements {$r_1c_1\in D, r_2c_1\notin D$}. But {$r_2c_1=\frac{r_2}{r_1}r_1c_1\in D$} with a contradiction. And these two are nonisomorphic, thus distinct. For suppose there was an isomorphism {$f:C_1\rightarrow C_2$}. Then {$f((a,b)\cdot m)=(a,b)\cdot f(m)$}, thus {$f(am)=bf(m)$} for all {$a,b$}, namely, {$f(am)=0$} for all {$a\in\mathbb{R}$}, which is not an isomorphism. These are the only simple {$\mathbb{R}\oplus\mathbb{R}$}-modules, up to isomorphism. For if there was another simple module {$M$}, then consider {$m\in M, m\neq 0$}. We have {$m = (1,1)\cdot m = (1,0)\cdot m + (0,1)\cdot m$}. At least one of the latter terms must be nonzero. Suppose it is {$(1,0)\cdot m$}. Then we have a submodule given by {$\{(a,0)\cdot m \;|\; a\in\mathbb{R}\}$} which is isomorphic to {$C_1$}. {$M$} is simple and so it must be equal to this submodule. But then {$M$} is isomorphic to {$C_1$} or otherwise {$C_2$}. Isomorphism {$Cl(\mathbb{R})_{1,0}\cong \mathbb{R}\oplus\mathbb{R}$} Compare {$(a,b)\in \mathbb{R}\oplus\mathbb{R}$} with {$x+y\epsilon_1\in Cl(\mathbb{R})_{1,0}$}. {$(1,1)\Leftrightarrow 1$} {$(1,-1)\Leftrightarrow \epsilon_1$} {$(1,0)=\frac{1}{2}[(1,1)+(1,-1)]\Leftrightarrow\frac{1}{2}[1+\epsilon_1] $} {$(0,1)=\frac{1}{2}[(1,1)-(1,-1)]\Leftrightarrow\frac{1}{2}[1-\epsilon_1]$} {$(a,0)\Leftrightarrow\frac{a}{2}[1+\epsilon_1]$} {$(0,b)\Leftrightarrow\frac{b}{2}[1-\epsilon_1]$} {$(a,b)\Leftrightarrow\frac{a+b}{2}+\frac{a-b}{2}\epsilon_1$} {$(a,b)\Leftrightarrow x+y\epsilon_1$} {$x=\frac{a+b}{2}, y=\frac{a-b}{2}$} {$a=x+y,b=x-y$} {$(x+y,x-y)\Leftrightarrow x+y\epsilon_1$} Decomposability Why are split-complex number decomposable? Whereas complex numbers are not? The determinant of a matrix is the product of the eigenvalues:
We can directly solve for the eigenvalues and eigenvectors: {$M=\begin{pmatrix} x & y \\ y & x \end{pmatrix}\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \lambda\begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$} {$xv_1+yv_2=\lambda v_1$}, {$yv_1+xv_2=\lambda v_2$}
We can express {$M=SM'S^{-1}$} whereby {$M$} and {$M'$} are related by a change of bases. We can solve for {$S$} by writing {$MS=SM'$}. This yields: {$\begin{pmatrix} x & y \\ y & x \end{pmatrix} = \begin{pmatrix} s & t \\ s & -t \end{pmatrix}\begin{pmatrix} x+y & 0 \\ 0 & x-y \end{pmatrix}\begin{pmatrix} \frac{1}{2s} & \frac{1}{2s} \\ \frac{1}{2t} & \frac{-1}{2t} \end{pmatrix}$} Matrix Algebra {$\begin{pmatrix} x & y \\ y & x \end{pmatrix}$} Rewritten with {$x=\frac{a+b}{2}$}, {$y=\frac{a-b}{2}$} where {$(a,b)\in\mathbb{R}\oplus\mathbb{R}$}. This yields: {$ \begin{pmatrix} \frac{a+b}{2} & \frac{a-b}{2} \\ \frac{a-b}{2} & \frac{a+b}{2} \end{pmatrix} + \begin{pmatrix} \frac{c+d}{2} & \frac{c-d}{2} \\ \frac{c-d}{2} & \frac{c+d}{2} \end{pmatrix} = \begin{pmatrix} \frac{a+b+c+d}{2} & \frac{a+c-b-d}{2} \\ \frac{a+c-b-d}{2} & \frac{a+b+c+d}{2} \end{pmatrix} $} {$ \begin{pmatrix} \frac{a+b}{2} & \frac{a-b}{2} \\ \frac{a-b}{2} & \frac{a+b}{2} \end{pmatrix} \begin{pmatrix} \frac{c+d}{2} & \frac{c-d}{2} \\ \frac{c-d}{2} & \frac{c+d}{2} \end{pmatrix} = \begin{pmatrix} \frac{ac+bd}{2} & \frac{ac-bd}{2} \\ \frac{ac-bd}{2} & \frac{ac+bd}{2} \end{pmatrix} $} because {$\frac{(a+b)(c+d) + (a-b)(c-d)}{2\cdot 2}=\frac{(ac+ac) + (ad-ad) + (bc-bc) + (bd+bd)}{2\cdot 2}=\frac{2ac+2bd}{2\cdot 2}=\frac{ac+bd}{2}$} likewise {$\frac{(a+b)(c-d) + (a-b)(c+d)}{2\cdot 2}=\frac{(ac+ac) + (ad-ad) + (bc-bc) + (-bd-bd)}{2\cdot 2}=\frac{2ac-2bd}{2\cdot 2}=\frac{ac-bd}{2}$} Taking projections Given {$(a,b)\in\mathbb{R}\oplus\mathbb{R}$} we can set {$b=0$}, yielding the left projection {$(a,0)$}, and we can set {$a=0$}, yielding the right projection {$(0,b)$}. Representation based on left projection {$ \begin{pmatrix} \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} \end{pmatrix} + \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{c}{2} & \frac{c}{2} \end{pmatrix} = \begin{pmatrix} \frac{a+c}{2} & \frac{a+c}{2} \\ \frac{a+c}{2} & \frac{a+c}{2} \end{pmatrix} $} {$ \begin{pmatrix} \frac{a}{2} & \frac{a}{2} \\ \frac{a}{2} & \frac{a}{2} \end{pmatrix} \begin{pmatrix} \frac{c}{2} & \frac{c}{2} \\ \frac{c}{2} & \frac{c}{2} \end{pmatrix} = \begin{pmatrix} \frac{ac}{2} & \frac{ac}{2} \\ \frac{ac}{2} & \frac{ac}{2} \end{pmatrix} $} because {$\frac{ac}{4}+\frac{ac}{4}=\frac{ac}{2}$} But we could have simply {$(a)$}. Representation based on right projection {$ \begin{pmatrix} \frac{b}{2} & \frac{-b}{2} \\ \frac{-b}{2} & \frac{b}{2} \end{pmatrix} + \begin{pmatrix} \frac{d}{2} & \frac{-d}{2} \\ \frac{-d}{2} & \frac{d}{2} \end{pmatrix} = \begin{pmatrix} \frac{b+d}{2} & \frac{-b-d}{2} \\ \frac{-b-d}{2} & \frac{b+d}{2} \end{pmatrix} $} {$ \begin{pmatrix} \frac{b}{2} & \frac{-b}{2} \\ \frac{-b}{2} & \frac{b}{2} \end{pmatrix} \begin{pmatrix} \frac{d}{2} & \frac{-d}{2} \\ \frac{-d}{2} & \frac{d}{2} \end{pmatrix} = \begin{pmatrix} \frac{bd}{2} & \frac{-bd}{2} \\ \frac{-bd}{2} & \frac{bd}{2} \end{pmatrix} $} because {$\frac{bd}{4}+\frac{bd}{4}=\frac{bd}{2}$} and {$(-b)(d)=(b)(-d)=-bd$} Can we make this one-dimensional? {$(a,b),(c,d)\in\mathbb{R}\oplus\mathbb{R}$} {$(a)(c)=(ac)$} {$(b)(d)=(bd)$} {$x+y\epsilon_1, u+v\epsilon_1\in Cl_{1,0}(\mathbb{R})$} {$(x+y\epsilon_1)(u+v\epsilon_1)=xu+yv+(xv+yu)\epsilon_1$} {$(x+y)(u+v)=xu+xv+yu+yv=([xu+yv]+[xv+yu])$} {$(x-y\epsilon_1)(u-v\epsilon_1)=xu+yv-(xv+yu)\epsilon_1$} {$(x-y)(u-v)=xu-xv-yu+yv=([xu+yv]-[xv+yu])$} Further Study Questions How does this apply to the split biquaternions? {$\mathbb{H}\oplus\mathbb{H}$} How do we make sense of the {$\mathbb{Z}_2$}-graded representations? How do we calculate the group relevant for Bott periodicity? What happens when we replace the real numbers with matrices of real numbers? {$M_8(\mathbb{R})\oplus M_8(\mathbb{R})$} Why are 0, -1, 1 key for Clifford algebras? |