Epistemology
Introduction E9F5FC Questions FFFFC0 Software |
See: Math notebook, Binomial theorem Challenge: Interpret the polynomials {$\binom{X}{n}$} as the diagonals of Pascal's triangle. Reference {$$\binom{X}{n} = \frac{X(X-1)\cdots(X-m-1)}{m!}$$} This gives the values down the th diagonal, counting from 0: {$$\binom{X}{0} = 1$$} {$$\binom{X}{1} = X$$} {$$\binom{X}{2} = \frac{X^2-X}{2}$$} {$$\binom{X}{3} = \frac{X^3-3X^2+2X}{6}$$} The recursion is given by {$$\binom{X}{m}=\binom{X-1}{m-1}+\binom{X-1}{m}$$} {$$\frac{X(X-1)\cdots(X-m+1)}{m!} = \frac{(X-1)\cdots(X-m+1)}{m-1!} + \frac{(X-1)\cdots(X-m)}{m!}$$} {$$ = \frac{(X-1)\cdots(X-m+1)}{m-1!}(1 + \frac{X-m}{m})$$} {$$ = \frac{(X-1)\cdots(X-m+1)}{m-1!}(\frac{m+X-m}{m})$$} {$$ = \frac{(X-1)\cdots(X-m)}{m-1!}(\frac{X}{m})$$} What is the combinatorial interpretation? |