Epistemology
Introduction E9F5FC Questions FFFFC0 Software |
Orthogonal matrices are defined by {$QQ^T=I$} What form do they take? {$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}\begin{pmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \end{pmatrix}=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$} {$a_{11}^2+a_{12}^2=1$} {$a_{11}a_{21} + a_{12}a_{22}=0$} {$a_{21}^2+a_{22}^2=1$} Solve {$a_{21}=\cos\theta,a_{22}=\sin\theta$} {$a_{11}=-\frac{a_{12}a_{22}}{a_{21}}$} {$\frac{a_{12}^2a_{22}^2}{a_{21}^2}+a_{12}^2=1$} {$a_{12}^2[\frac{a_{22}^2}{a_{11}^2}+1]=1$} {$a_{22}^2[\frac{\sin^2\theta}{\cos^2\theta}+1]=a_{22}^2[\frac{\sin^2\theta+cos^2\theta}{\cos^2\theta}]=a_{22}^2\frac{1}{\cos^2\theta}=1$} {$a_{22}^2=\cos^2\theta, a_{22}=\pm\cos\theta$} {$\cos\theta=-\frac{\sin\theta \pm\cos\theta}{a_{21}}$} {$a_{21}=\mp\sin\theta$} {$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$} and {$\begin{pmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$} Thus we have two kinds of solutions: {$\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}\begin{pmatrix} u \\ v \end{pmatrix}=\begin{pmatrix} u\cos\theta - v\sin\theta \\ u\sin\theta + v\cos\theta \end{pmatrix}$} rotation {$\begin{pmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}\begin{pmatrix} u \\ v \end{pmatrix}=\begin{pmatrix} -u\cos\theta + v\sin\theta \\ u\sin\theta + v\cos\theta \end{pmatrix}$} rotation and reflection of x-coordinate across y-axis We can analyze this by noting that these maps are norm-preserving. For example: {$(-u\cos\theta + v\sin\theta)^2+(u\sin\theta + v\cos\theta)^2 = u^2(\cos^2\theta + \sin^2\theta) + 2uv(-\cos\theta\sin\theta + \cos\theta\sin\theta) + u^2(\cos^2\theta + \sin^2\theta) = u^2+v^2$}. Note that they differ in their determinants {$\cos^2\theta -(-\sin^2\theta)=1$} and {$-\cos^2\theta-\sin^2\theta=-1$} And then consider what happens to the unit vectors {$\begin{pmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}\begin{pmatrix} 1 \\ 0 \end{pmatrix}=\begin{pmatrix} -\cos\theta \\ \sin\theta \end{pmatrix}$} This is a rotation with a reflection of the x-coordinate across the y-axis {$\begin{pmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}\begin{pmatrix} 0 \\ 1 \end{pmatrix}=\begin{pmatrix} \sin\theta \\ \cos\theta \end{pmatrix}$} This is a rotation clockwise, not counterclockwise. Thus it is a rotation counterclockwise that has then been reflected across the y-axis. Eigenvectors and their geometric interpretation |