Introduction

Notes

Math

Epistemology

Search

Andrius Kulikauskas

  • m a t h 4 w i s d o m - g m a i l
  • +370 607 27 665
  • My work is in the Public Domain for all to share freely.

用中文

  • 读物 书 影片 维基百科

Introduction E9F5FC

Questions FFFFC0

Software


Map of math, Math constants, Math functions, Theorems, Math Companion concepts

I'm organizing the concepts in The Princeton Companion to Mathematics.


  • What is the place for geometric constructions?

https://read.amazon.com





Mathematical answers

Quantify answers

  • N Exact counting (Listing) S= 18a. Enumerative combinatorics (polynomial time algorithms for computation)
    • 18., 20., 11., 9. Expanders
    • 18., 6., 17., 10a., 10b., B1. Knot Polynomials
  • N An Extremal problems S= 19a. Extremal Combinatorics
    • 19a. Graphs
  • N Averages S= 19b. Probabilistic combinatorics
    • 19 b., 22., 11., 26. Probability Distributions

Explain coincidences

  • S= 18b. Algebraic combinatorics (interpreting formulas)
    • 18b., 18a. Generating Functions

Manage discrepancies

  • N An Estimates S= 2. Analytic number theory
    • 2. Euclidean Algorithm and Continued Fractions
    • 2., 11. Exponential and Logarithmic Functions
    • 2. Gamma Function
    • 2., 5. L-Functions
    • 2., 5., 7. Riemann Zeta Function
  • Algo An Approximations S= 21. Numerical analysis (algorithms for approximating the continuum)
    • 21., 11. Wavelets
  • Al An Predictions S= 24. Stochastic processes (model the evolution of random phenomena)

Formulate intuition as constraints on equations

  • G An E= 13. General relativity and the Einstein equations (expressing, interpreting and validating a theory of physics)
    • 13., 7. Curvature

Solve equations. Any solutions? Unique solution? Constraints on solutions?

  • Al G Linear equations. S= 9. Representation Theory
    • 9. Determinants
    • 9., 10 b. Jordan Normal Form
    • 9., 6., 10a., 10b., 12., 17., 7. Lie Theory
    • 9., 15., 11., 12. Linear Operators and Their Properties
    • 9., 15. Representations
    • 9., 15., 10a. Quaternions, Octonions and Normed Division Algebras
    • 9., 15., 23. Tensor Products
  • N Al Polynomial equations. S= 1. Algebraic numbers
    • 1. Galois Groups
    • 1. Ideal Class Group
    • 1., 22. Irrational and Transcendental Numbers
    • 1., 2., 4. Local and Global in Number Theory
    • 1., 4., 6., 15. Quadratic Forms
    • 1. Number Fields
    • 1., 4., 9. Rings, Ideals, and Modules
  • G Al Polynomial equations in several variables. S= 4. Algebraic geometry
    • 4. Elliptic Curves
    • 4. Modular Forms
    • 4., 6. Projective Space
    • 4., 7., 16. Orbifolds
    • 4., 1., 5. Schemes
    • 4., 5. Varieties
  • N G Diophantine equations. S= 5. Arithmetic geometry
    • 5., 4., 15., 7., 6., 11., 23. Quantum Groups
  • An Al Differential equations. S= 12. Partial differential equations
    • 12. Distributions
    • 12. Euler and Navier-Stokes Equations
    • 12., 11., 15., 7., 6. Heat Equation
    • 12., 11., 21. Linear and Nonlinear Waves and Solitons
    • 12., 14., 15., 24., 25., 11. Schroedinger Equation
    • 12., 18., 21., 11., 19b. Special Functions

Articulate instructions. Find explicit proofs and algorithms

  • Algo N S= 20. Computational complexity (what can be computed efficiently or not)
    • 20. Computational Complexity Classes
    • 20., 9., 18. Matroids
    • 20., 11., 15., 19b., 26. Quantum Computation
    • 20., 9., 14., 10a., 18. Simplex Algorithm
  • F Al S= 23. Logic and model theory (formal languages about mathematical structures, whether a proof exists or not)
    • 23., 6. Categories
    • 23., 22. Models of Set Theory
    • 23., 22. Peano Axioms

Discover patterns

  • Al N S= Groups (symmetries), 10b. Combinatorial group theory (groups in terms of their generators and relations)
    • 10b., 9., 17. Monster Group
    • 10b., 9., 19b. Permutation Groups

Classify structures.

  • N Algo Building blocks and combinations. E= 3. Computational number theory (identifying primes as components or in totality)
    • 3., 10b. Modular Arithmetic
  • Families and exceptions. E= Algebraic topology
  • G An Transformation demonstrates equivalence. E= 7. Differential topology (classifying smooth manifolds - list all smooth structures on any topological manifold and be able to identify them - a certain set of discrete subgroups of the isometry group of any one of the eight model spaces determines a compact manifold with the corresponding geometric structure)
    • 7., 6., 4., 8. Manifolds
    • 7., 4., BX1. Differential Forms and Integration
    • 7., 4., 16. Calabi-Yau Manifolds
    • 7., 14. Dimension
    • 7. Compactness and Compactification
    • 7., 22., 18., 20., 13., 15. Metric Spaces
    • 7., 6., 12. Ricci Flow
    • 7., 6., 11., 10a. Riemann Surfaces
    • 7., 6., 15., 14., 24. Symplectic Manifolds
  • G Al Invariant demonstrates nonequivalence. E= 6. Algebraic topology
    • 6., 4. Braid Groups
    • 6., 7., 4. Genus
    • 6. Homology and Cohomology
    • 6., 15. K-Theory
    • 6., 7., 4. Topological Spaces
    • 6., 7., 10a., 1. Universal Covers
    • 6., 7. Vector Bundles
  • G An Map to a structure E= 8. Moduli spaces (give a geometric structure to the totality of the objects we are trying to classify)
    • 8., 6., 7., 4., 1., 11. Moduli Spaces

Improve results

  • An N Weaken hypotheses. E= 15. Operator algebras (expanding from finite-dimensional equations to integral equations)
    • 15. C*-Algebras
    • 15. Function Spaces
    • 15., 11. Hilbert Spaces
    • 15., 12., 11., 9. Normed Spaces and Banach Spaces
    • 15., 9., 7. Spectrum
    • 15. Von Neumann Algebras
  • An G Strengthen conclusions. E= 11. Harmonic analysis (determining the properties of functions that are not explicitly describable, for example, the effect of operators on the boundedness of functions)
    • 11., 9., 12., 26. Fourier Transform
    • 11. Fast Fourier Transform
    • 11., 6., 26., 4. Pi
    • 11., 9., 15., 7. Spherical Harmonics
    • 11., 15., 12., 19b., 18., 7., 2., 14., 9. Transforms
    • 11., 7., 15. Trigonometric Functions
  • Prove a more abstract result. E= Category theory

Suspend rigor. Work with arguments that are not fully rigorous.

  • An Algo E=Conditional results = 14. Dynamics (how systems evolve in time)
    • 14., 12. Dynamical Systems and Chaos
    • 14., 12., 15., 9., 17., 16., 7. Hamiltonians
    • 14. Mandelbrot
    • 14., 12., 7. Optimization and Lagrange Multipliers
    • 14., 7., 12., 11., 24. Variational Methods
  • Al An E=Numerical evidence. = 25. Probabilistic models of critical phenomena (modeling thresholds for divergent outcomes)
    • 25. Ising Model
    • 25. Phase Transitions
  • An G E="Illegal" calculations. = 16. Mirror symmetry (reformulating a physical theory's information in a mirror theory)

Determine compatibility. Whether different mathematical properties are compatible.

  • An Al E= 17. Vertex operator algebras (formulating perspective: relating quantum data and space-time manifold)

Reintrepret ideas.

  • Al G Identify characteristic properties. E= 10a. Geometric group theory (groups in terms of their actions expressed geometrically)
    • 10a. Buildings
    • 10a., 4., 6., 16. Duality
    • 10a., 12., 6. Fuchsian Groups
    • 10a., 9. Leech Lattice
  • N F Generalize after reformulation P= 22. Set theory (distinguishing between cardinals-sets and ordinals-lists and relating the two)
    • 22. Axiom of Choice
    • 22. Axiom of Determinacy
    • 22. Cardinals
    • 22. Countable and Uncountable Sets
    • 22., 15., 25. Measures
    • 22. Ordinals
    • 22., 23. Zermelo-Fraenkel Axioms
  • G N Higher dimensions and several variables. E= 26. High-dimensional geometry and its probabilistic analogues (most efficient boundary for volume, the sphere, models random distributions)

N Numbers, G Geometry, Al Algebra, Algo Algorithms, An Analysis, P Proof, F Foundations

  • B1. Chemistry
  • B2. Biology
  • B3. Wavelets and Applications
  • B4. Traffic in Networks
  • B5. Algorithm Design
  • B6. Reliable Transmission of Information
  • B7. Cryptography
  • B8. Economic Reasoning
  • B9. Money
  • B10. Statistics
    • B10. Bayesian Analysis
    • B10., B6., Designs
  • B11. Medical Statistics
  • B12. Philosophical Analysis
  • B13. Music
  • B14. Art
  • BX1. Physics

Consider underlying assumptions. Counting, averaging, extremes - all suppose "many".

Are the math answers expressing the 12 topologies? Should there be two more kinds?

Ideas

Bifurcation of topics

  • Continuity vs. Topology (properties that are not affected by continuous transformations)
  • Factorization vs. Primes

Consciousness - matching the unconscious and the conscious - is like solving an equation.



Edit - Upload - History - Print - Recent changes
Search:
This page was last changed on January 14, 2024, at 07:04 PM