Epistemology
Introduction E9F5FC Questions FFFFC0 Software |
Hamiltonians and Quantum Symmetries
Interpretations
Observations Hamiltonians are Hermitian. The {$m\in\frak{m}_i$} are commuting with {$J_1,\dots,J_m$} but anticommuting with {$J_{m+1}$}. This means that they branch away from those that commute with all {$J_i$}. Thus they are all disjoint. And the initial {$m\in\frak{m}_0$} are those that simply anticommute with {$J_1$}. What does it mean for them to commute with a mythical {$J_0$} and previous linear complex structures? Two ways of looking at the Lie group embeddings
The symmetric spaces form a sequence of order-parameter spaces that arise as we progressively break a large symmetry by introducing more and more symmetry-breaking operators. As a bonus, the matrices representing the symmetry-breaking operators will later serve as the building blocks of model Hamiltonians that yield all possible topologically non-trivial band structures. These Hamiltonians are maps between complex vectors spaces and so are the quantum symmetries. {$C$} and {$T$} are antilinear maps. In Stone, Chiu, Roy, the antilinear maps {$\mathcal{C}H\mathcal{C}^{-1} = −H$} can be understood as real matrices with {$2\times 2$} antilinear blocks. They are given by complex matrices {$CH^∗ C^{−1} = −H$}. Quantum symmetries The symmetries are of the form {$J_i$}, squaring to {$-I$}, or {$J_iJ_jJ_k$}, squaring to {$+I$}. {$C$} is either {$J_2$} or {$J_2J_4J_6=N=\varphi$} (establishing real structure). Note that both are based on {$D=\textrm[1,-1,1,-1]$} but {$C$} has {$D$} in the upper triangular matrix and {$-D$} in the lower triangular matrix, whereas {$N$} has {$D$} in the top half of the diagonal followed by {$-D$} in the bottom half. Note also that {$-D$} is simply reading {$D$} in the reverse order. {$J_2=\begin{pmatrix} & & 1 & & & & & \\ & & & -1 & & & & \\ -1 & & & & & & & \\ & 1 & & & & & & \\ & & & & & & 1 & \\ & & & & & & & -1 \\ & & & & -1 & & & \\ & & & & & 1 & & \\ \end{pmatrix}$} {$J_2J_4J_6=\begin{pmatrix} 1 & & & & & & & \\ & -1 & & & & & & \\ & & 1 & & & & & \\ & & & -1 & & & & \\ & & & & -1 & & & \\ & & & & & 1 & & \\ & & & & & & -1 & \\ & & & & & & & 1 \\ \end{pmatrix}$} {$J_4J_6=\begin{pmatrix} & & -1 & & & & & \\ & & & -1 & & & & \\ 1 & & & & & & & \\ & 1 & & & & & & \\ & & & & & & 1 & \\ & & & & & & & 1 \\ & & & & -1 & & & \\ & & & & & -1 & & \\ \end{pmatrix}$} {$T$} is based on the {$J_i$} which anticommutes with {$m\in\frak{m}$}. Thus it is either {$J_1$}, {$J_2$}, {$J_3$} or it ends in {$J_5,J_6,J_7$}. It skips over {$J_4$} and {$J_8$}, which yield isometries. {$J_2=C$} when {$m$} anticommutes with {$J_2$} and then {$J_2=T$} when {$m$} anticommutes with {$J_3$}. Similarly, {$J_2J_4J_6=C$} when {$m$} anticommutes with {$J_6$} and then {$J_2J_4J_6=T$} when {$m$} anticommutes with {$J_7$}. {$D≡ O(16r)$}: The coset generators {$m ∈ m_{−1}$} are real skew-symmetric matrices. These are not diagonalizable within the reals. We need to double the Hilbert space to {$R^{32r}$} and tensor with “{$i$}”= {$−iσ_2$} so that the Hamiltonian becomes {$H = −iσ_2 ⊗ m$}. Then taking {$\phi = σ_3 ⊗ I$} to be the real structure that defines complex conjugation, we have {$ϕH = −Hϕ$}. This {$\phi$} therefore defines a particle-hole symmetry that squares to {$+I$}. We should not count the eigenvectors {$v$} and {$iv ≡ (−iσ_2 ⊗ I)v$} as being distinct. (We can regard the {$R^{32r}$} space and the operators {$“i$}” and {$ϕ$} as being inherited from the previous cycle of the Bott clock.) “{$i$}” {$=\begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix}=-i\sigma_2=-i\begin{pmatrix} 0 & -i \\ i & 0 \\ \end{pmatrix}$} {$m^T=-m$} is a {$16\times 16$} matrix. {$H = −iσ_2 ⊗ m = \begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}$} is a {$32\times 32$} matrix. {$σ_3= \begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}$} {$\phi=σ_3 ⊗ I=\begin{pmatrix} I & 0 \\ 0 & -I \\ \end{pmatrix}$} is a {$32\times 32$} real matrix that is the antilinear map that defines complex conjugation {$\phi H = \begin{pmatrix} I & 0 \\ 0 & -I \\ \end{pmatrix}\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix} = \begin{pmatrix} 0 & -m \\ -m & 0 \\ \end{pmatrix} = \begin{pmatrix} 0 & m \\ -m & 0 \\ \end{pmatrix}\begin{pmatrix} I & 0 \\ 0 & -I \\ \end{pmatrix} = -H\phi$} {$\phi^2=I$} For particle hole symmetry, we think here in terms of real antilinear {$\phi$} rather than complex matrix {$C$}. Let eigenvector {$v=\begin{pmatrix}v_1 \\ v_2 \end{pmatrix}$} such that {$Hv=\lambda_v v$}. Then {$Hv=\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}\begin{pmatrix}v_1 \\ v_2 \end{pmatrix}=\begin{pmatrix}-mv_2 \\ mv_1 \end{pmatrix}$} and so {$mv_2=-\lambda_v v_1$} and {$mv_1=\lambda_v v_2$}. Define an equivalent eigenvector {$iv ≡ (−iσ_2 ⊗ I)v = \begin{pmatrix} 0 & -I \\ I & 0 \\ \end{pmatrix}\begin{pmatrix}v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix}-v_2 \\ v_1 \end{pmatrix}$}. We have {$Hiv=\lambda_v iv$}. Thus {$Hiv=\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}\begin{pmatrix}-v_2 \\ v_1 \end{pmatrix} = \begin{pmatrix}-mv_1 \\ -mv_2 \end{pmatrix} $} and so {$mv_1=\lambda_v v_2$} and {$mv_2=-\lambda_v v_1$}. The eigenvector is the same in that it differs only by a (complex) scalar. Given {$m(v_1+iv_2)=(a+bi)(v_1+iv_2)$} we have {$\lambda_v=i(a+bi)=-b+ai$} where {$H(v_1+iv_2)=i(a+bi)(v_1+iv_2)$}. So set {$\begin{pmatrix}-v_2 \\ v_1 \end{pmatrix}\sim \begin{pmatrix}v_1 \\ v_2 \end{pmatrix}$} {$DIII ≡ O(16r)/U(8r)$}: The {$m ∈ \frak{m}_0$} ’s are real skew symmetric matrices that anticommute with {$J_1$} . We can keep {$C = ϕ$} as a particle-hole symmetry and take {$T = ϕ ⊗ J_1$} as a time reversal that commutes with {$H = −iσ_2 ⊗ M$} and squares to {$−I$}. The product of {$C$} and {$T$} is {$J_1$} , and this a linear (commutes with {$−iσ_2 ⊗ I$}) “{$P$} ” type symmetry that anticommutes with {$H$}. {$m$} consists of pairs of {$2\times 2$} blocks of the form {$\begin{matrix} & \begin{pmatrix} a & b \\ b & -a \\ \end{pmatrix} \\ \begin{pmatrix} -a & -b \\ -b & a \\ \end{pmatrix} & \\ \end{matrix}$} which together encode a quaternion of the form {$aj+bk$}. Separately, each block {$\begin{pmatrix} a & b \\ b & -a \\ \end{pmatrix}=\begin{pmatrix} a & -b \\ b & a \\ \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & -1 \\ \end{pmatrix}$} encodes multiplication by a complex number {$a+bi$} times a conjugation. {$H = −iσ_2 ⊗ m = \begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}$} is a {$32\times 32$} matrix. {$C=\phi=\begin{pmatrix} I & 0 \\ 0 & -I \\ \end{pmatrix}$} is a {$32\times 32$} matrix. {$CH=\begin{pmatrix} I & 0 \\ 0 & -I \\ \end{pmatrix}\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}=\begin{pmatrix} 0 & -m \\ -m & 0 \\ \end{pmatrix}$} {$HC=\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}\begin{pmatrix} I & 0 \\ 0 & -I \\ \end{pmatrix}=\begin{pmatrix} 0 & m \\ m & 0 \\ \end{pmatrix}=-CH$} {$T = \phi ⊗ J_1$} This is true if we understand {$\phi$} as a {$2\times 2$} matrix and note that {$J_1$} is a {$16\times 16$} matrix. {$T= \begin{pmatrix} J_1 & 0 \\ 0 & -J_1 \\ \end{pmatrix} $} is a {$32\times 32$} matrix. {$T^2=-I$} {$TH=\begin{pmatrix} J_1 & 0 \\ 0 & -J_1 \\ \end{pmatrix}\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}=\begin{pmatrix} 0 & -J_1m \\ -J_1m & 0 \\ \end{pmatrix}=\begin{pmatrix} 0 & mJ_1 \\ mJ_1 & 0 \\ \end{pmatrix}=\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}\begin{pmatrix} J_1 & 0 \\ 0 & -J_1 \\ \end{pmatrix}=HT$} {$P=J_1=CT=\begin{pmatrix} I & 0 \\ 0 & -I \\ \end{pmatrix} \begin{pmatrix} J_1 & 0 \\ 0 & -J_1 \\ \end{pmatrix}=\begin{pmatrix} J_1 & 0 \\ 0 & J_1 \\ \end{pmatrix}$} is a {$32\times 32$} matrix. {$Pi=\begin{pmatrix} J_1 & 0 \\ 0 & J_1 \\ \end{pmatrix}\begin{pmatrix} 0 & -I \\ I & 0 \\ \end{pmatrix}=\begin{pmatrix} 0 & -J_1 \\ J_1 & 0 \\ \end{pmatrix} = \begin{pmatrix} 0 & -I \\ I & 0 \\ \end{pmatrix}\begin{pmatrix} J_1 & 0 \\ 0 & J_1 \\ \end{pmatrix}=iP$} {$PH=\begin{pmatrix} J_1 & 0 \\ 0 & J_1 \\ \end{pmatrix}\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}=\begin{pmatrix} 0 & -J_1m \\ J_1m & 0 \\ \end{pmatrix}$} {$HP=\begin{pmatrix} 0 & -m \\ m & 0 \\ \end{pmatrix}\begin{pmatrix} J_1 & 0 \\ 0 & J_1 \\ \end{pmatrix}=\begin{pmatrix} 0 & -mJ_1 \\ mJ_1 & 0 \\ \end{pmatrix}=\begin{pmatrix} 0 & J_1m \\ -J_1m & 0 \\ \end{pmatrix}=-PH$} Define {$J_1\equiv P$} {$AII≡ U(8r)/Sp(4r)$}: The generators {$m ∈ \frak{m}_1$} are real skew matrices that commute with {$J_1$} and anticommute with {$J_2$} . They can be regarded as skew-quaternion-hermitian matrices with complex entries. We no longer need set {$i → −iσ_2 ⊗ I$} as the matrices no longer have elements coupling between the artificial copies. We instead use {$J_1$} as the surrogate for “{$i$}.” Now {$H = J_1 m$} is real symmetric, and commutes with {$T = J_2$} . This {$T$} acts as a time reversal operator squaring to {$−I$}. {$\frak{g}_1$} are the {$8\times 8$} skew-Hermitian matrices. Their entries are complex numbers. The transpose of the imaginary numbers equals the matrix entries and the transpose of the real numbers equals {$-1$} times the matrix entries. {$\frak{h}_1$} are {$4\times 4$} quaternionic skew-Hermitian matrices, which is to say, the matrices {$A=-A^Q$} where {$A^Q$} is the quaternionic conjugate transpose. Their entries are {$2\times 2$} matrices of {$2\times 2$} matrices which are either complex linear blocks (coding complex numbers) or antilinear blocks (of real numbers). Specifically, consider the multiplication of a quaternion as a vector {$x_0 + x_1i + x_2j + x_3k$} times a quaternion {$a + bi + cj + dk$} as a matrix. We have four equations:
Thus we can express the quaternion {$a + bi + cj + dk$} as the matrix {$\begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \\ \end{pmatrix}$} This gives a way for coding the quaternions that extends {$i$} with {$-i$} and yields a matrix of complex numbers. Here {$a=1$} codes for the identity, {$b=1$} codes for {$i$}, {$c=-1$} codes for {$j$} and {$d=1$} codes for {$k$} as in Stone, Chiu, Roy, and we can express them together in terms of {$2\times 2$} complex linear matrices X and Y {$\begin{pmatrix} X & -Y \\ \bar{Y} & \bar{X} \\ \end{pmatrix}$} Note that when {$a=0$}, this matrix, understood in terms of complex numbers, is skew-Hermitian. Note also that the imaginary components are given by skew-symmetric real matrices. Furthermore, when {$a=0$} and {$c=0$}, this matrix is skew-hermitian with regard to the quaternion conjugate transpose. Crucially, given a skew-hermitian matrix, consider a {$2\times 2$} matrix within it. It is either off the diagonal or on the diagonal. If it is off the diagonal, then consider {$\begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \\ \end{pmatrix}$}, its negative complex conjugate transpose {$\begin{pmatrix} -a & b & c & d \\ -b & -a & -d & c \\ -c & d & -a & -b \\ -d & -c & b & -a \\ \end{pmatrix}$} and its negative quaternionic conjugate transpose {$\begin{pmatrix} -a & b & c & d \\ -b & -a & -d & c \\ -c & d & -a & -b \\ -d & -c & b & -a \\ \end{pmatrix}$} which is the same. If the matrix is on the diagonal, then being skew-hermitian we must have {$a=0$}, so consider {$\begin{pmatrix} 0 & b & c & d \\ -b & 0 & -d & c \\ -c & d & 0 & -b \\ -d & -c & b & 0 \\ \end{pmatrix}$} Again, it is furthermore skew-hermitian with regard to the quaternionic conjugate transpose if and only if {$c=0$}. Now consider the {$4\times 4$} real matrices which are complex linear, that is, their {$2\times 2$} blocks can be identified with complex numbers. Consider when they commute or anticommute with the matrix {$J_2$} that encodes the quaternion {$j$}. Note that the {$j$} are on the diagonal and so the commuting or anticommuting {$4\times 4$} blocks can be anywhere. Namely, we are dealing with {$\sum_{k=k}j_{kk}a_{kl}=ja_{kl}=\pm a_{lk}j=\sum_{k=k}a_{lk}j_{kk}$}. {$J_2=j=\begin{pmatrix} & & 1 & \\ & & & -1 \\ -1 & & & \\ & & 1 & \\ \end{pmatrix} = \begin{pmatrix} 0 & r \\ -r & 0 \\ \end{pmatrix}$} {$\begin{pmatrix} 0 & r \\ -r & 0 \\ \end{pmatrix}\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ \end{pmatrix} = \begin{pmatrix} rc_{21} & rc_{22} \\ -rc_{11} & -rc_{12} \\ \end{pmatrix}$} {$\begin{pmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ \end{pmatrix}\begin{pmatrix} 0 & r \\ -r & 0 \\ \end{pmatrix} = \begin{pmatrix} -c_{12}r & c_{11}r \\ -c_{22}r & c_{21}r \\ \end{pmatrix}$} If they commute, then {$rc_{11}=-c_{22}r$}, {$rc_{21}=-c_{12}r$}, thus {$rc_{11}r^{-1}=-c_{22}$}, {$rc_{21}r^{-1}=-c_{12}$}, thus {$\overline{c_{11}}=c_{22}$}, {$\overline{c_{12}}=-c_{21}$}, yielding the quaternion {$\begin{pmatrix} X & Y \\ -\overline{Y} & \overline{X} \\ \end{pmatrix}$} Whereas if they anticommute, we have what Stone, Chiu, Roy call the skew-quaternion {$\begin{pmatrix} X & Y \\ \overline{Y} & -\overline{X} \\ \end{pmatrix}$} Now {$\frak{g}_1=\frak{u}(8)$} are the {$8\times 8$} skew-Hermitian matrices and {$\frak{h}_1=\frak{sp}(4)$} are quaternion skew-Hermitian matrices and {$\frak{m}_1$} are skew-quaternion Hermitian matrices. Exploring the latter, now consider {$\begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ c & -d & -a & b \\ d & c & -b & -a \\ \end{pmatrix}$} If it is on the diagonal, then since it is skew-Hermitian, it must be that {$a=0$}, {$c=0$} and {$d=0$}. Multiplying by {$J_1$} gives {$\begin{pmatrix} & -1 & & \\ 1 & & & \\ & & & -1 \\ & & 1 & \\ \end{pmatrix}\begin{pmatrix} 0 & b & 0 & 0 \\ -b & 0 & 0 & 0 \\ 0 & 0 & 0 & b \\ 0 & 0 & -b & 0 \\ \end{pmatrix} = \begin{pmatrix} b & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & b & 0 \\ 0 & 0 & 0 & b \\ \end{pmatrix}$} which is a block {$bI$} in a real symmetric Hamiltonian. Off the diagonal, {$m$} has blocks {$\begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ c & -d & -a & b \\ d & c & -b & -a \\ \end{pmatrix}$} with negative complex conjugate transposes {$\begin{pmatrix} -a & b & -c & -d \\ -b & -a & d & -c \\ -c & d & a & b \\ -d & -c & -b & a \\ \end{pmatrix}$} Multiplying by {$J_1$} gives {$\begin{pmatrix} & -1 & & \\ 1 & & & \\ & & & -1 \\ & & 1 & \\ \end{pmatrix}\begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ c & -d & -a & b \\ d & c & -b & -a \\ \end{pmatrix} = \begin{pmatrix} b & -a & d & -c \\ a & b & c & d \\ -d & -c & b & a \\ c & -d & -a & b \\ \end{pmatrix}$} and {$\begin{pmatrix} & -1 & & \\ 1 & & & \\ & & & -1 \\ & & 1 & \\ \end{pmatrix}\begin{pmatrix} -a & b & -c & -d \\ -b & -a & d & -c \\ -c & d & a & b \\ -d & -c & -b & a \\ \end{pmatrix} = \begin{pmatrix} b & a & -d & c \\ -a & b & -c & -d \\ d & c & b & -a \\ -c & d & a & b \\ \end{pmatrix}$} Taken together the pair of blocks are part of a real symmetric Hamiltonian {$H=J_1m$}. They code quaternions: {$q=\begin{pmatrix}X & Y \\ -\overline{Y} & \overline{X} \\ \end{pmatrix}$} and {$\overline{q}=\begin{pmatrix}\overline{X} & -Y \\ -\overline{Y} & X \\ \end{pmatrix}$} Thus the Hamiltonian {$H$} is its own quaternionic conjugate transpose {$H^Q=H$}. {$T^2=-I$} {$HT=J_1mJ_2=J_1(-J_2m)=J_2J_1m=TH$} Define {$J_2\equiv T$} Alternatively, consider the multiplication of a quaternion {$a + bi + cj + dk$} as a matrix times a quaternion {$x_0 + x_1i + x_2j + x_3k$} as a vector. We have four equations:
Thus we can express the quaternion {$a + bi + cj + dk$} as the matrix {$\begin{pmatrix} a & -b & -c & -d \\ b & a & -d & c \\ c & d & a & -b \\ d & -c & b & a \\ \end{pmatrix}$} Note that here the complex number {$i$} is extended with {$-i$}. Here {$a=1$} codes for the identity, {$b=1$} codes for {$i$}, {$c=-1$} codes for {$j$} and {$d=-1$} codes for {$k$}. We can express this matrix in terms of {$2\times 2$} real matrices which encode a complex linear matrix L and an antilinear map A {$\begin{pmatrix} L & -A \\ A & L \\ \end{pmatrix}$} Note that the imaginary components are given by skew-symmetric real matrices. {$CII≡ Sp(4r)/Sp(2r) × Sp(2r)$}: The matrices {$m ∈ \frak{m}_2$} commute with {$J_1$} and {$J_2$} but anti- commute with {$J_3$}. Again {$H = J_1 m$}. We can set {$T = J_3$} as this commutes with with {$H$} and squares to {$−I$}. {$P = J_2 J_3$} anticommutes with {$H$} but commutes with {$J_1$} (and so is a linear map) while {$C = J_2$} anticommutes with {$H$}, is antilinear and squares to {$−I$}. The Lie algebra {$\frak{g}_2=\frak{sp}(4r)$} consists of matrices {$M$} with quaternionic ({$4\times 4$} real) entries such that {$M^Q=-M$}. Furthermore the {$8\times 8$} matrices {$m$} anti-commmute with {$J_3$}. We consider {$\begin{pmatrix}q_{11} & q_{12} & q_{13} & q_{14} \\ q_{21} & q_{22} & q_{23} & q_{24} \\ q_{31} & q_{32} & q_{33} & q_{34} \\ q_{41} & q_{42} & q_{43} & q_{44} \\ \end{pmatrix} \begin{pmatrix}-k & & & \\ & k & & \\ & & -k & \\ & & & k \\ \end{pmatrix} = \pm\begin{pmatrix}-k & & & \\ & k & & \\ & & -k & \\ & & & k \\ \end{pmatrix} \begin{pmatrix}q_{11} & q_{12} & q_{13} & q_{14} \\ q_{21} & q_{22} & q_{23} & q_{24} \\ q_{31} & q_{32} & q_{33} & q_{34} \\ q_{41} & q_{42} & q_{43} & q_{44} \\ \end{pmatrix}$} {$\begin{pmatrix}-q_{11}k & q_{12}k & -q_{13}k & q_{14}k \\ -q_{21}k & q_{22}k & -q_{23}k & q_{24}k \\ -q_{31}k & q_{32} & -q_{33}k & q_{34}k \\ -q_{41}k & q_{42}k & -q_{43}k & q_{44}k \\ \end{pmatrix} = \pm \begin{pmatrix} kq_{11} & kq_{12} & kq_{13} & kq_{14} \\ -kq_{21} & -kq_{22} & -kq_{23} & -kq_{24} \\ kq_{31} & kq_{32} & kq_{33} & kq_{34} \\ -kq_{41} & -kq_{42} & -kq_{43} & -kq_{44} \\ \end{pmatrix}$} Note that the quaternions {$q_{kl}$} are written with different matrices than the {$k$} in {$J_3$}. We have {$\begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & -a & -b \\ -d & -c & b & -a \\ \end{pmatrix}\begin{pmatrix} & & & 1 \\ & & 1 & \\ & -1 & & \\ -1 & & & \\ \end{pmatrix} = \begin{pmatrix} -d & -c & b & a \\ -c & d & a & -b \\ b & a & d & -c \\ a & -b & -c & -d \\ \end{pmatrix} $} {$\begin{pmatrix} & & & 1 \\ & & 1 & \\ & -1 & & \\ -1 & & & \\ \end{pmatrix}\begin{pmatrix} a & b & c & d \\ -b & a & -d & c \\ -c & d & -a & -b \\ -d & -c & b & -a \\ \end{pmatrix} = \begin{pmatrix} -d & -c & b & -a \\ -c & d & -a & -b \\ b & -a & d & -c \\ -a & -b & -c & -d \\ \end{pmatrix} $} We have {$qk=kq$} implies {$a=0$} whereas {$qk=-kq$} implies {$b=c=d=0$}. Let {$r_{ij}$} be real quaternions and {$s_{ij}$} be imaginary quaternions. We have that {$\begin{pmatrix} s_{11} & r_{12} & s_{13} & r_{14} \\ r_{21} & s_{22} & r_{23} & s_{24} \\ s_{31} & r_{32} & s_{33} & r_{34} \\ r_{41} & s_{42} & r_{43} & s_{44} \\ \end{pmatrix}$} commute with {$J_3$} and are the matrices in {$\frak{g}_2$} that are in {$\frak{h}_2$}. {$\begin{pmatrix} r_{11} & s_{12} & r_{13} & s_{14} \\ s_{21} & r_{22} & s_{23} & r_{24} \\ r_{31} & s_{32} & r_{33} & s_{34} \\ s_{41} & r_{42} & s_{43} & r_{44} \\ \end{pmatrix}$} anticommute with {$J_3$} and are the matrices in {$\frak{g}_2$} that are in {$\frak{m}_2$}. {$H=J_1m$} {$T=J_3= \begin{pmatrix} & & & -1 & & & & \\ & & -1 & & & & & \\ & 1 & & & & & & \\ 1 & & & & & & & \\ & & & & & & & 1 \\ & & & & & & 1 & \\ & & & & & -1 & & \\ & & & & -1 & & & \\ \end{pmatrix}$} {$TH=J_3J_1m=J_1mJ_3=HT$} {$C=J_2$} {$CH=J_2J_1m=-J_1mJ_2$} {$P=CT=J_2J_3$} {$PJ_1=J_2J_2J_1=J_1J_2J_3=J_1P$} {$PH=J_2J_3J_1m=J_1J_2J_3m=-J_1J_2mJ_3=-J_1mJ_2J_3=-HP$} Define {$J_3\equiv T$} {$C≡ {Sp(2r) × Sp(2r)}/Sp(2r) ≃ Sp(2r)$}: The matrices {$m ∈ \frak{m}_3$} commute with {$J_1 , J_2 , J_3$} , and anticommute with {$J_4$} , and we can restrict ourselves to the subspace in which {$K = J_1 J_2 J_3$} takes a definite value, say {$+1$}. The Hamiltonian {$J_1 m$} commutes with {$J_4$} – but {$J_4$} does not commute with {$J_1 J_2 J_3$} and so is not allowed as an operator on our subspace. Indeed no product involving {$J_4$} is allowed. But {$C = J_2$} commutes with {$J_1 J_2 J_3$} and still anticommutes with {$H$}. Thus we still have a particle-hole symmetry squaring to {$−1$}. The old time reversal {$J_3$} now anticommutes with {$H$} and looks like another particle- hole symmetry, but is not really an independent one as in this subspace {$J_3 = J_2 J_1$} and {$J_1$} is simply multiplication by “{$i$}.” Continue with the results from before and ask what commutes and anticommutes with {$J_4$} {$\begin{pmatrix} s_{11} & r_{12} & s_{13} & r_{14} \\ r_{21} & s_{22} & r_{23} & s_{24} \\ s_{31} & r_{32} & s_{33} & r_{34} \\ r_{41} & s_{42} & r_{43} & s_{44} \\ \end{pmatrix}\begin{pmatrix} & k & & \\ k & & & \\ & & & k \\ & & k & \\ \end{pmatrix} = \begin{pmatrix} r_{12}k & s_{11}k & r_{14}k & s_{13}k \\ s_{22}k & r_{21}k & s_{24}k & r_{23}k \\ r_{32}k & s_{31}k & r_{34}k & s_{33}k \\ s_{42}k & r_{41}k & s_{44}k & r_{43}k \end{pmatrix}$} {$\begin{pmatrix} & k & & \\ k & & & \\ & & & k \\ & & k & \\ \end{pmatrix} \begin{pmatrix} s_{11} & r_{12} & s_{13} & r_{14} \\ r_{21} & s_{22} & r_{23} & s_{24} \\ s_{31} & r_{32} & s_{33} & r_{34} \\ r_{41} & s_{42} & r_{43} & s_{44} \\ \end{pmatrix} = \begin{pmatrix} kr_{21} & ks_{22} & kr_{23} & ks_{24} \\ ks_{11} & kr_{12} & ks_{13} & kr_{14} \\ kr_{41} & ks_{42} & kr_{43} & ks_{44} \\ ks_{31} & kr_{32} & ks_{33} & kr_{34} \end{pmatrix} $} Recall that {$r_{ij}=-\overline{r_{ji}}$} and {$s_{ij}=-\overline{s_{ji}}$} where we are applying the quaternionic conjugate transpose. This means that on the diagonal these real quaternions are {$0$} when the matrix is commuting with {$J_4$}. More generally, consider {$r_{ij}k=kr_{mn}$}. The real quaternions are scalars and this yields {$r_{ij}=r_{mn}$} when the matrix commutes with {$J_4$} and {$r_{ij}=-r_{mn}$} when they anticommute. As regards {$s_{ij}k=ks_{mn}$}, note that {$\begin{pmatrix} & 1 \\ -1 & \\ \end{pmatrix}\begin{pmatrix} X & Y \\ -\overline{Y} & \overline{X} \\ \end{pmatrix} = \begin{pmatrix}\overline{X} & \overline{Y} \\ -Y & X \\ \end{pmatrix}$} is the complex conjugate. Note also that for imaginary quaternions the conjugate is simply the negative. Thus the blocks of the form {$\begin{pmatrix} s & r \\ r' & s' \\ \end{pmatrix} $} become {$\begin{pmatrix} s & r \\ r & -s \\ \end{pmatrix} $} if the matrix commutes with {$J_4$} and become {$\begin{pmatrix} s & r \\ -r & s \\ \end{pmatrix} $} if the matrix anticommutes with {$J_4$}. {$H=J_1m$} Restrict to {$8$}-dimensional {$V_+=[v_1,v_2,v_3,v_4,0,0,0,0,v_9,v_{10},v_{11},v_{12},0,0,0,0]$} for {$16$}-dimensional operator {$J_1J_2J_3 = \textrm{diag}[1,1,1,1,-1,-1,-1,-1]$}. This is the same as restricting to a two-dimensional quaternionic vector space {$V_+=[q_1,q_2]$}. This means that each {$2\times 2$} block of quaternions gets reduced to the quaternion {$(s)$}. Note that reducing the vector space eliminates the distinction between those {$m$} which commute with {$J_4$} and those that don't. {$m=\begin{pmatrix} s_{11} & s_{13} \\ s_{31} & s_{33} \\ \end{pmatrix} =\begin{pmatrix} s_{11} & s_{13} \\ -\overline{s_{13}} & s_{33} \\ \end{pmatrix}$} for {$m^Q=-m$} and recall that the {$s_{ij}$} are imaginary quaternions. {$H=J_1m=\begin{pmatrix} is_{11} & is_{13} \\ -i\overline{s_{13}} & is_{33} \\ \end{pmatrix}$} where {$i$} is the quaternion {$i_2$}.` {$HJ_4=J_1mJ_4=J_4J_1m=J_4H$} {$J_4K=J_4J_1J_2J_3=-J_1J_2J_3J_4=-KJ_4$} {$C=J_2$} {$CK=J_2J_1J_2J_3=-J_1J_2J_2J_3=J_1J_2J_3J_2=KC$} {$CH=J_2J_1m=-J_1J_2m=-J_1mJ_2=-HC$} In this halved subspace we now have the relation {$J_3=J_1J_2$} which functions like {$J_3=iJ_2$}. We also don't have operators which include {$J_4$} because they would have to be built with {$J_1, J_2, J_3$} but these all commute with {$K=J_1J_2J_3$}. However, the matrices {$m$} do anticommute with {$J_4$}, which is how its impact is felt. It restricts the matrices {$m$}. {$CI≡ Sp(2r)/U(2r)$}: The {$m ∈ \frak{m}_4$} anticommute with {$J_5$} . Now {$J_4 J_5$} commutes with {$J_1 J_2 J_3 $}, and so is an allowed operator. It anticommutes with {$H = J_1 m$} and commutes with {$J_1$} . It is therefore a “{$P$} ”-type linear map. The map {$T = J_2 J_4 J_5$} is antilinear (anticommutes with {$J_1$} ), commutes with {$H$} and {$T^2 = +I$}. We can take {$C = J_2$} again. {$m=\begin{pmatrix} s_2 & \\ & s_2 \\ \end{pmatrix}$} where {$s_2=\begin{pmatrix} d & & & -c \\ & d & c & \\ & -c & d & \\ c & & & d \\ \end{pmatrix}$} is made of complex linear {$2\times 2$} blocks. {$H = J_1 m = \begin{pmatrix} i_4s_2 & \\ & i_4s_2 \\ \end{pmatrix}$} where {$i_4s_2=\begin{pmatrix} & -d & -c & \\ d & & & -c \\ -c & & & -d \\ & -c & d & \\ \end{pmatrix}$} {$C=J_2$} {$T=J_2J_4J_5=\begin{pmatrix} & & & 1 & & & & \\ & & 1 & & & & & \\ & 1 & & & & & & \\ 1 & & & & & & & \\ & & & & & & & -1 \\ & & & & & & -1 & \\ & & & & & -1 & & \\ & & & & -1 & & & \\ \end{pmatrix}$} {$P=J_4J_5=-CT=\begin{pmatrix} & -1 & & & & & & \\ 1 & & & & & & & \\ & & & 1 & & & & \\ & & -1 & & & & & \\ & & & & & 1 & & \\ & & & & -1 & & & \\ & & & & & & & -1 \\ & & & & & & 1 & \\ \end{pmatrix}$} {$PK=KP$} {$AI ≡ U(2r)/O(2r)$}: The {$m ∈ \frak{m}_5 n$} anticommute with {$J_6$} , and we are to restrict ourselves to the subspace on which {$K = J_1 J_2 J_3 = +1$} and {$M = J_1 J_4 J_5 = +1$}. The map {$T = J_3 J_4 J_6$} commutes with {$K$} and {$M$} and commutes {$H = J_1 m$}. We have {$T^2 = +I$}. We could equivalently take {$T = J_2 J_4 J_6$}. {$H=J_1m$} {$T=N=J_2J_4J_6=\textrm{diag}[-1,1,-1,1,-1,1,-1,1]$} {$BDI≡ O(2r)/O(r) × O(r)$}: The {$m ∈ \frak{m}_6$} anticommute with {$J_7$} , and we are to restrict our- selves to the eigenspaces of {$K = J_1 J_2 J_3 , M = J_1 J_4 J_5$} . The {$m$} also commute with the antilinear operator {$N = J_2 J_4 J_6$} which we can regard as our real structure {$ϕ$}. We therefore set {$C = ϕ = N$}. Now {$J_3 J_4 J_7 , J_3 J_5 J_6 , J_2 J_5 J_7$} and {$J_1 J_6 J_7$} all commute with {$K$}, {$M$} and {$N$}, each squaring to {$+I$}. In the restricted subspace {$J_3 J_4 J_7 ∝ J_2 J_5 J_7 ∝ J_1 J_6 J_7$} and {$J_3 J_5 J_6 ∝ I$}. The problem here is what to take for “{$i$},” as the current {$H → J_1 m$} will take us out of the eigenspace of {$N$}. But this is the problem we started with. We need to double the space and keep “{$i$}”= {$J_1$} and the real structure {$ϕ = N$}. We are therefore retaining the {$R^{2r}$} Hilbert space. With {$H = J_1 m$} we have that {$T = J_1 J_6 J_7$} commutes with {$H$} and squares to {$+I$}. I don't understand how {$T=J_1J_6J_7$} and {$H=J_1 m$} commute. I get {$TH=J_1J_6J_7J_1m=J_1^2J_6J_7m=-J_1mJ_1J_6J_7=-HT$}. {$D≡ {O(r) × O(r)}/O(r) ≃ O(r)$}: Now the {$m ∈ \frak{m}_7$} anticommute with {$J_8$} and, except for the factor “{$i$}”= {$J_1$} , we should stay in the space where {$K = J_1 J_2 J_3 , M = J_1 J_4 J_5 , N = J_2 J_4 J_6$} and {$P = J_1 J_6 J_7$} take the value {$+1$} With {$H = J_1 m$} we have that {$C = ϕ = N$} anticommutes with {$H$}, and brings us full circle. We have {$\hat{r}=\begin{pmatrix}1 & 0\\0 & -1\\ \end{pmatrix}, \hat{i}=\begin{pmatrix}0 & -1\\1 & 0\\ \end{pmatrix}$} The {$16$}-dimensional vector space on which {$K,M,N,P$} take the value {$+1$} is {$(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,s)$}. {$O(1)=\{(1),(-1)\}$} and we can think of this in terms of {$2\times 2$} matrices expressing {$O(1)\times O(1)/O(1)$} {$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \end{pmatrix}$}, {$\begin{pmatrix} -1 & 0 \\ 0 & -1 \\ \end{pmatrix}$} are the values for {$m ∈ \frak{m}_7$} {$H=J_1m$} has values {$\begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix}$}, {$\begin{pmatrix} 0 & -1 \\ 1 & 0 \\ \end{pmatrix}$} which expresses {$\pm i$}. {$J_8= \begin{pmatrix} & & & & \hat{i}\hat{r} & & & \\ & & & & & -\hat{i}\hat{r} & & \\ & & & & & & -\hat{i}\hat{r} & \\ & & & & & & & \hat{i}\hat{r} \\-\hat{i}\hat{r} & & & & & & & \\ & \hat{i}\hat{r} & & & & & & \\ & & \hat{i}\hat{r} & & & & & \\ & & & -\hat{i}\hat{r} & & & & \\ \end{pmatrix}$} 读物
Observations
Ideas
A Hamiltonian is specific to a single quasiparticle and that accords with an identity that takes up perspectives. As J_i are applied the Hamiltonian is restricted to an ever more elaborate surface and that quasiparticle, that "eye", is related to one of the possiblities (perspectives) in that sophisticated structure. A 2x2 swap matrix {$ir$} swaps axes but doesn't indicate their orientation, it doesn't have to, whereas a rotation {$i$} swaps axes but also indicates an orientation to the axes. So that is an important distinction. In the field of computational neuroscience, random matrices are increasingly used to model the network of synaptic connections between neurons in the brain. Dynamical models of neuronal networks with random connectivity matrix were shown to exhibit a phase transition to chaos[24] when the variance of the synaptic weights crosses a critical value, at the limit of infinite system size. Results on random matrices have also shown that the dynamics of random-matrix models are insensitive to mean connection strength. Instead, the stability of fluctuations depends on connection strength variation[25][26] and time to synchrony depends on network topology. |