Introduction

Notes

Math

Epistemology

Search

Andrius Kulikauskas

  • m a t h 4 w i s d o m - g m a i l
  • +370 607 27 665
  • My work is in the Public Domain for all to share freely.

用中文

  • 读物 书 影片 维基百科

Introduction E9F5FC

Questions FFFFC0

Software

Michael Gibbs's Bit Representation of Clifford Algebras


Signature {$P-N$}8k8k+18k+28k+38k+48k+58k+68k+7
Type{$\mathbb{R}$}{$\mathbb{R}\oplus\mathbb{R}$}{$\mathbb{R}$}{$\mathbb{C}$}{$\mathbb{H}$}{$\mathbb{H}\oplus\mathbb{H}$}{$\mathbb{H}$}{$\mathbb{C}$}
Bits(B){$\frac{1}{2}(P+N)$}{$\frac{1}{2}(P+N-1)$}{$\frac{1}{2}(P+N)$}{$\frac{1}{2}(P+N-1)$}{$\frac{1}{2}(P+N-2)$}{$\frac{1}{2}(P+N-3)$}{$\frac{1}{2}(P+N-2)$}{$\frac{1}{2}(P+N-1)$}
Bits(B) P=0{$0$}{$3$}{$3$}{$2$}{$1$}{$0$}{$0$}{$0$}

Bits B indicates that there are 2B rows and columns in the nonzero blocks of the matrix.

From Bits to Matrix

The number of basis elements is a power of 2, thus the basis elements are representable by a string of P+N bits.

Gibbs provides a reasonably simple encoding that translates the bit string into the full matrix which represents the Clifford algebra.

Links

Edit - Upload - History - Print - Recent changes
Search:
This page was last changed on May 01, 2024, at 11:10 PM