Introduction

Notes

Math

Epistemology

Search

Andrius Kulikauskas

  • m a t h 4 w i s d o m - g m a i l
  • +370 607 27 665
  • My work is in the Public Domain for all to share freely.

用中文

  • 读物 书 影片 维基百科

Introduction E9F5FC

Questions FFFFC0

Software


Investigation: Understand the progression from forms to geometries.


Consider three (bilinear or sesquilinear) forms

{$a+bi\Leftrightarrow a-bi$}ComplexUnitaryHermitian{$\phi(x,y) = \overline{\phi(y,x)}$}
{$a\Leftrightarrow a$}RealOrthogonalSymmetric{$\phi(x,y) = \phi(y,x)$}
{$bi\Leftrightarrow -bi$}QuaternionSymplecticAnti-symmetric{$\phi(x,y) = -\phi(y,x)$}

{$x=\varepsilon_1 x_1 + \dots + \varepsilon_n x_n \text{ where } \varepsilon_i \in \mathbb{R}, \mathbb{C} \text{ or } \mathbb{H}$}

{$y = \eta_1 y_1 + \dots + \eta_n y_n \text{ where } \eta_i \in \mathbb{R}, \mathbb{C} \text{ or } \mathbb{H}$}

{$\phi (x,y) = \sum \varepsilon_i \phi_{ij} \eta_j \text{ or } \phi (x,y) = \sum \overline{\varepsilon_i} \phi_{ij} \eta_j$}

{$ \phi(x,y) = \pm \overline{\varepsilon_1} \eta_1 \pm \overline{\varepsilon_2} \eta_2 \pm \cdots \pm \overline{\varepsilon_n} \eta_n $}

{$ \phi(x,y) = \varepsilon_1 \eta_1 + \varepsilon_2 \eta_2 + \cdots + \varepsilon_n \eta_n $}

{$ \phi(x,y) = (\varepsilon_1 \eta_{m+1} - \varepsilon_{m+1} \eta_{1}) + (\varepsilon_2 \eta_{m+2} - \varepsilon_{m+2} \eta_{2}) + \cdots + (\varepsilon_m \eta_{2m} - \varepsilon_{2m} \eta_{m}) $}

Idea to work on:

{$\overline{\varepsilon}\eta = (\varepsilon_1 - \varepsilon_{m+1}i)(\eta_1 + \eta_{m+1}i)$}

{$=\varepsilon_1 \eta_1 + \varepsilon_{m+1} \eta_{m+1} + (\varepsilon_1 \eta_{m+1} - \varepsilon_{m+1} \eta_1)i$}

complex = real + i * quaternion

unitary = orthogonal + i * symplectic

Readings

Edit - Upload - History - Print - Recent changes
Search:
This page was last changed on March 26, 2020, at 10:32 PM