Epistemology
Introduction E9F5FC Questions FFFFC0 Software |
Consider the {$2x2$} identity matrix. What is its square root? {$$ \begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix}=\begin{pmatrix}a_{11} & a_{12}\\ a_{21} & a_{22}\end{pmatrix}\begin{pmatrix}a_{11} & a_{12}\\ a_{21} & a_{22}\end{pmatrix}$$} This yields equations of the form: {$$ {a_{11}}^2 + a_{12}a_{21} = 1 $$} {$$ a_{12}a_{22} + a_{11}a_{12} = 0 $$} The latter equation means {$ a_{12}=0$} or {$ a_{22} = -a_{11} $}. Similarly, by symmetry, {$ a_{21}=0$} or {$ a_{22} = -a_{11} $}. Combining, we have ({$ a_{12}=0$} and {$ a_{21}=0$}) or {$ a_{22} = -a_{11} $}. Solving further, this yields the following two possibilities: {$ \begin{pmatrix}\pm1 & 0\\ 0 & \pm1\end{pmatrix} $} or {$ \begin{pmatrix}\sqrt{1-ab} & a\\ b & -\sqrt{1-ab}\end{pmatrix} $} or {$ \begin{pmatrix}-\sqrt{1-ab} & a\\ b & \sqrt{1-ab}\end{pmatrix} $} But the first case and the second case match when a or b = 0. Thus the answer is: {$ \begin{pmatrix}1 & 0\\ 0 & 1\end{pmatrix} $} or {$ \begin{pmatrix}-1 & 0\\ 0 & -1\end{pmatrix} $} or {$ \begin{pmatrix}\sqrt{1-ab} & a\\ b & -\sqrt{1-ab}\end{pmatrix} $} or {$ \begin{pmatrix}-\sqrt{1-ab} & a\\ b & \sqrt{1-ab}\end{pmatrix} $} Note that {$a$} and {$b$} can be any complex number. However, if we want a real matrix, then we must have {$a$} and {$b$} real such that {$ab \leq 1$}. |