Epistemology
Introduction E9F5FC Questions FFFFC0 Software |
Consider the compact Lie groups: orthogonal group {$O(n)$}, unitary group {$U(n)$}, compact symplectic group {$Sp(n)$}.
{$$U(2r)\supset U(r)\times U(r) \supset U(r)$$} This manifests 2-fold complex Bott periodicity. {$$O(16r)\supset U(8r)\supset Sp(4r)\supset Sp(2r)\times Sp(2r)\supset Sp(2r)\supset U(2r) \supset O(2r)\supset O(r)\times O(r) \supset O(r)$$} This manifests 8-fold real Bott periodicity.
{$$J=\begin{pmatrix}0 & -1 & & & \\ 1 & 0 & & 0 & \\ & & \ddots & & \\ & 0 & & 0 & -1 \\ & & & 1 & 0\end{pmatrix}$$} Then the 2-fold Lie group embedding is generated by retaining what commutes with {$iJ_1$} and then a mutually anticommuting {$iJ_2$}. That is, {$(iJ_1)(iJ_2)=-(iJ_2)(iJ_1)$} or simply {$J_1J_2=-J_2J_1$}. The 8-fold Lie group embedding is generated by retaining what commutes with mutually anticommuting {$J_1,J_2,\dots J_k$}.
If {$\lambda$} is an eigenvalue of {$K$} with eigenvector {$v$}, then {$v=K^2v=\lambda^2v$}, thus {$\lambda =\pm 1$}. This means that the vector space {$V=V_+\oplus V_-$} where {$Kv=v$} for {$v\in V_+$} and {$Kv=-v$} for {$v\in V_-$}.
If {$v_+\in V_+$}, then {$iJAv_+=AiJv_+=Av_+$}. This implies {$Av_+\in V_+$}. If {$v_-\in V_-$}, then {$iJAv_-=AiJv_-=-Av_-$}. This implies {$Av_-\in V_-$}. Consequently, {$A\in U(n)\times U(n)$}. We have {$U(2n)\supset U(n)\times U(n)$}.
Then {$(J_1J_2J_3)(J_1J_2J_3) = J_1^2J_2J_3J_2J_3=-J_1^2J_2^2J_3^2=+1$}. This yields {$O(2n)\supset O(n)\times O(n)$} and {$Sp(2n)\supset Sp(n)\times Sp(n)$}.
|