Epistemology
Introduction E9F5FC Questions FFFFC0 Software |
Exercises 1, 5, 7, 9, 11 Exercise 1 Let {$F < E$} be a field extension and let {$X \subseteq E$} be a set of algebraically independent elements over {$F$}. Let {$U: \mathbf{Field} \Rightarrow \mathbf{Set}$} be the forgetful functor. Find a universal pair for {$X$} and {$U$}. Exercise 5 Show that the polynomial ring {$F[x]$} is a universal object. Exercise 7 Let {$U:\mathbf{Vect}_k\Rightarrow\mathbf{Set}$} be the underlying set functor. Which sets {$S$} have couniversal pairs? Exercise 9 Let {$G:\mathbf{D}\Rightarrow\mathbf{C}$} and let {$C\in\mathbf{C}$} and {$U\in\mathbf{D}$}. Let {$$\{τ_{C,D}\}_{\mathbf{C},\mathbf{D}}:\textrm{hom}(C,GD)\leftrightarrow\textrm{hom}(U,D)$$} be a family of bijections and {$$u=τ^{-1}_{C,U}(1_U)$$} Show that the following are equivalent. a) {$\{τ_{C,D}\}$} is natural in {$D$}. b) {$\{τ_{C,D}\}_D$} satisfy the formula {$$τ^{-1}_{C,D'}(g\circ h)=Gg\circ τ^{-1}_{C,D}(h)$$} for all {$h:U\rightarrow D$} and {$g:D\rightarrow D'$}. c) {$$τ^{-1}_{C,D'}(g)=Gg\circ τ^{-1}_{C,D}(1_U)$$} for all {$g:D\rightarrow D'$}. Exercise 11 Let {$F:D\Rightarrow C$} and let {$C\in C$}. Prove that the functor {$\textrm{hom}_\mathbf{C}(C,F\cdot):\mathbf{D}\rightarrow\mathbf{Set}$} is representable if and only if there is a universal pair for {$(C, F)$}. |