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Abstract

Unlike many other investigations on this topic, the present one does not consider the nonlinear SLP as a single special type of the
classification rule. In SLP training we can obtain seven statistical classifiers of differing complexity: (1) the Euclidean distance classifier; (2)
the standard Fisher linear discriminant function (DF); (3) the Fisher linear DF with pseudo-inversion of the covariance matrix; (4) regularized
linear discriminant analysis; (5) the generalized Fisher DF; (6) the minimum empirical error classifier; and (7) the maximum margin
classifier. A survey of earlier and new results, referring to relationships between the complexity of six classifiers, generalization error,
and the number of learning examples, is presented. These relationships depend on the complexities of both the classifier and the data. This
knowledge indicates how to control the SLP classifier complexity purposefully by determining optimal values of the targets, learning-step
and its change in the training process, the number of iterations, and addition or subtraction of a regularization term. A correct initialization of
weights, and a simplifying data structure can help to reduce the generalization error.q 1998 Elsevier Science Ltd. All rights reserved.

Keywords:Single-layer perceptron; Statistical classification; Generalization error; Initialization; Overtraining; Dimensionality; Complexity;
Sample size; Scissors effect

1. Introduction

In Part I (Raudys, 1998) we demonstrated that in the non-
linear SLP training we can obtain seven statistical classifiers
of differing complexity. In theoretical analysis and applica-
tions, it is important to know the relationship between the
complexities of classifiers, their generalization properties,
and the numbers of learning examples. A great deal of
research work concerned with this relationship has been
performed during the last three decades.

After proposing the first stochastic descent algorithm,
Widrow and Hoff (1960) concluded that the sample size
required to achieve a given learning quality of the adaline
type algorithm should increase in proportion to the number
of inputs. Cover (1965) introduced a capacity—a measure
of the complexity, and showed that the generalization error
decreases in proportion top/n, dimensionality–learning-set
size ratio.

Several approaches have been proposed to study the gen-
eralization error in finite learning-set size situations. In a

number of research papers beginning with their 1968
paper, Vapnik and Chervonenkis (1968) developed the
Cover capacity concept and obtained a number of upper
estimates for the generalization error.

In the classical statistical approach, vectorx to be classi-
fied into classesp1, p2 is assumed to be a random variable
with a certain conditional probability density function
f(x|p i). To estimate the structure of the classifier and its
weight vectorw, one uses assumptions on the probabilistic
structure off(x|p i), and learning-set observation vectors. To
analyse a dependence of the generalization error on the
structure of the classifier and the learning-set size, one
uses standard statistical methods. This approach is consid-
ered in his paper. Among other approaches, the most popu-
lar are: a probable almost correct (PAC) framework
(Valiant, 1984); the statistical mechanics approach; and
the information-theoretic and statistical approach, based
on statistical models of conditional densityf(oi|w,x i) of
the outputoi of the network,f(x i), an unconditional density,
and the standard technique of asymptotic statistical infer-
ence, which is valid under regularity conditions such as the
existence of the moments of random variables and the exis-
tence of the Fisher information (see, e.g., Levin et al., 1990;
Amari and Murata, 1993; Amari, 1993).
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In the latter stream of investigations, Amari et al. (1992)
showed that the average generalization errorEPn behaves
asymptotically asL/n, when the network is deterministic,
the teacher signal is noiseless, and the network giving the
correct classification is uniquely specified by theL-
dimensional parameterw *. In the case with an empty zone
between the pattern classes, we have much better small
sample behaviourEPn,c/n2, where c is an unknown
constant. For a unique deterministic network trained by a
noisy teacherEPn,c/n1/2, and for a stochastic network
EPn,P` þ c1/n. Amari and Murata (1993) proved funda-
mental universal convergence theorems for the average gen-
eralization and training errors measured as the predictive
entropic lossEHn (stochastic complexity) evaluated by the
expectation of¹ log f(o|w,x) for an input–output pair (x, o).
For the weights estimated by the maximum likelihood
method or by the Bayes posterior distribution, it was proved
that an average generalization entropic error of the stochas-
tic network, EHn ¼ H` þ L */(2n), where L * shows the
complexity of the network. For the faithful (realizable) net-
work, L * ¼ L, and for the unfaithful (unrealizable) network,
L* ¼ trK ¹1G, whereK is the Hessian matrix, andG is the
Fisher information matrix. For a deterministic dichotomy
network,EHn ¼ L/n (Amari, 1993).

A characteristic property ofthe statistical-mechanics
approach is the so-called ‘‘thermodynamic limit’’, when
one examines the generalization error both asn → ` and
asL → `, but at some fixed rate. This allows us to mean-
ingfully investigate, for instance, an asymptotic generaliza-
tion error when the number of examples is half the number
of parameters, twice the number of parameters, 10 times the
number of parameters, and so on (Haussler et al., 1994).
This approach uses mathematical methods from statistical
mechanics, such as the replica symmetry technique and the
annealed approximation. There, a mean value of the ratio of
two random variables is substituted by the ratio of mean
values of these two random variables. The validity of this
approximation is still open. For some specific models the
statistical-mechanic approach succeeds in obtaining the
average generalization error, and its ‘‘phase transition’’
(sudden drops in the generalization error). For the determi-
nistic dichotomy network, for example, a strong rigorous
result was proved:EHn ¼ 0.623 L/n (Gyorgyi and Tishby,
1990; Opper and Haussler, 1991). In certain cases, a differ-
ent power law than 1/n or 1/n1/2 was demonstrated (Haussler
et al., 1994; Seung et al., 1992).

An interesting and promising approach is that ofcombin-
ing statistical physics with VC-bounds, that allows us to
incorporate of some problem specific information. It was
demonstrated that the introduction of limited information
on the distribution of error patterns to the classical-VC
formalism permits much tighter bounds on learning curves.
The ‘‘phase transitions’’, as well as significant drops in
learning errors, can be modelled for low sizes of training
samples for which the classical VC-bounds are void (see
Kowalczyk, 1996, and references therein).

A great deal has been done on theanalysis of the small
sample behaviour of statistical classifiers. As for the statis-
tical-mechanics approach, classical statistical analysis also
requires knowledge of the input signal distributionf(x|p i).
This is the weak point of these approaches. However,
assumptions on the probabilistic structure of pattern classes
and on the parameters make it possible to obtain narrower
error bounds. In some cases, absolutely exact results can be
obtained and only one question remains—how to use these
results in practice, where true distributions are unknown.

Rao (1949) was the first to emphasize, then, problems
when the number of learning examples was close to the
number of dimensions. The first numerical estimate of the
difference between the generalization and asymptotic errors
was obtained by numerical simulation at the Institute for
Numerical Analysis of University of California in Los
Angeles (see references in Solomon, 1956). Sitgreaves
(1961) derived the first exact formula for the expected clas-
sification error of the standard Fisher linear discriminant
function (DF) in the form of a five-times infinite sum of
products of certain hypergeometric functions. Estes (1965)
succeeded in calculating this sum, and Pikelis improved the
calculation accuracy and presented a table (Pikelis, 1974,
see also Raudys and Pikelis, 1980, and references therein).
The first asymptotic expansion for the expected classifica-
tion error of the Fisher linear DF belongs to Okamoto
(1963). It is obtained asymptotically, wheren → `, and
often yields inaccurate values, if the dimensionalityp is
large. John (1961) represented the linear discriminant func-
tion with the known covariance matrix as a difference of
two independent chi-square variables, and expressed the
expected error in a form of infinite sum. Raudys (1967)
used this result and derived the first simple asymptotic for-
mula for the expected probability of misclassification
(PMC) of an Euclidean distance classifier. Faithful and
unfaithful cases were first analysed here, as well as
the ‘‘thermodynamic limit’’ where both the learning set
sizen → ` and the dimensionalityp → `.

Deev (1970, 1972) formalized this thermodynamic limit
approach in a strictly mathematical way: it was formally
required thatn → `, p → `, p/n → constant, and Mahala-
nobis distanced ¼ const.Under this approach, several sub-
sequent asymptotic expansions were obtained for Gaussian
and non-Gaussian models. Two simple formulae for the
expected error for the standard Fisher linear DF were
obtained in Deev (1970, 1972), and Raudys (1972). Further
analysis (Pikelis, 1976; Wyman et al., 1990) showed that on
the ‘‘thermodynamic limit’’ based asymptotic expansions
give very accurate estimates. This approach was used to
obtain the generalization error for the standard quadratic
DF, linear and nonlinear classifiers for independent Gaus-
sian variables (Raudys, 1972), a block type and a tree type
dependency between the Gaussian variables (Deev, 1974;
Zarudskij, 1979), the classifier for independent categorical
variables (Meshalkin, 1976), and the regularized DA
(Raudys and Skurikhina, 1994). Meshalkin and Serdobolskij
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(1978) proved a fundamental limit theorem for arbitrary
non-Gaussian classes.

The ‘‘curse of dimensionality’’ was first described by
Lbov (1966) and Hughes (1968), and the ‘‘scissors effect’’
was discovered in Raudys (1970), and Kanal and Chandra-
sekaran (1971). See, also, Jain and Chandrasekaran (1982),
Raudys and Jain (1991): in small learning-set cases, it is
often preferable to use simple-structured classification
rules instead of complex ones, andvice versa; in large
learning-set cases, the complex classifiers can be used
more efficiently. In the statistical mechanics approach,
this effect was found much later (van Dam et al., 1994;
Meir, 1995).

Typically, in the generalization error study, the SLP is
analysed as a separate special specimen of the classification
algorithm. Most often the activation function (or the pattern
error function), it is assumed to be the linear or the threshold
function; sometimes it is assumed to be a softlimiting one.
As a matter of fact in all connectionist analysis, the authors
analyse the asymptotic behaviour of the perceptron for
individual models, paying too little attention to very small
learning-set situations, where the generalization error is high
in comparison with the asymptotic error. Too little attention is
paid to different mathematical models of the data.

Unlike manyother investigations, the present paper does
not consider the nonlinear SLP as a single classifier. We
analyse the perceptron as a dynamical process, and pay
special attention to the type of distribution of the pattern
classes and the situations where the learning-set size is
small. In Part I we have shown that on the way between
the starting point and the minimum of the cost function, the
weights of the perceptron gradually increase, and decision
boundaries of SLP become identical or close to those of
seven statistical classifiers. The aim of Part II is to show
how a substantial number of results from standard multi-
variate statistical analysis can be used in the generalization
error analysis of simple artificial neural nets.

The paper has been split into two parts. In Part I, we have
shown that the nonlinear SLP is not a single classifier, it is a
process. In this, Part II, we analyse the small learning-set
properties of several well known statistical classifiers which
can be detected in nonlinear SLP training results. A great
number of these results were published either in Russian or
in conference proceedings, and remained unknown to the
connectionist community. We analyse these former and new
results from a fresh unique point-of-view, using the termi-
nology popular in the statistical mechanics approach. We
demonstrate how theoretical results referring to statistical
classifiers can be used for conscious control of the SLP
complexity in its learning process.

In Section 3 of this part, we analyse small sample proper-
ties of four parametric statistical classifiers based on the
class distribution density. In the Section 4 we analyse two
nonparametric classifiers, based on the type of decision rule.
Section 5 is an experimental one. It shows that the
theoretical results presented in the previous two sections

are valid for nonlinear SLP classifier analysis. Section 6 ana-
lyses overtraining and the dynamics of the SLP training pro-
cess. Section 7 presents some additional references, and
compares the theoretical results with those obtained by other
approaches. Section 8 discusses practical aspects of using the-
oretical knowledge presented in the paper: complexity control;
data transformations; weight initialization; and so on.

2. Definitions and notation

We analyse a nonlinear SLP dichotomy classifier that has
p inputs, and one outputoutput¼ o(w9x þ wo), wherewo,
w ¼ ðw1, w2,...,wp)9 are weights,x ¼ (x1,x2,...,xp)9 is the
input vector,o(g) is the nonlinear ‘‘tanh’’ activation func-
tion. To find the perceptron weights we minimize the cost
function

costl ¼
1

2N1 þ N2

∑2

i ¼ 1

∑Ni

j ¼ 1
(t(i)j ¹ o(w9x(i)

j þ wo))2: (1)

In the above formula,t(i)j is the desired output (a target) of
x(i)

j , the jth learning-set observation vector fromp i, the ith
class,Ni is the number of learning vectors fromp i. Usually
we uset(1)

j ¼ 1 and t(2)
j ¼ ¹ 1 for the tanh(g) activation

function. We call these valueslimiting ones. In simulations
with the sigmoid function, we uset(1)

j ¼ 0 and t(2)
j ¼ 1

(limiting values), ort(1)
j ¼ 0.1 andt(2)

j ¼ 0.9. We analyse
the standard total gradient delta learning rule (back-
propagation, BP) where the weight vector is adapted accord-
ing to the iterative rulewðt þ 1Þ ¼ w (t) ¹ h]costl/]w, where
h is called a learning-step.

2.1. Data types used in numerical calculations and
simulation studies

GCCM (Gaussian with common variance matrices) are two
p-variate Gaussian classes N(m1,S), N(m2,S) with different
mean vectorsm1, m2 and a commonp 3 p covariance matrixS.

SGC are two multivariate spherical Gaussian classes
N(m1,I ), N(m2,I ).

EP(a)
N stands for the expected probability of misclassifica-

tion (PMC)—the mean generalization error—of the classi-
fier trained by methoda, P(a)

` is the asymptotic PMC:EP(a)
N

→ P(a)
` as the learning-set sizesN1, N1 → `, andPB is the

Bayes error.
C are two 20-variate (p ¼ 20) GCCM classes;

unit variances of all the variables, correlations between
all the variables r ¼ 0.213, (m1 ¹ m2)9 ¼

(¹1.7040,0.0326,0.0599,0.0872,...,0.4970,0.5244).P(E)
` ¼

0.03, P(F)
` ¼ 0.01, and the effective dimensionality for

EDC p* ¼ p.
D1 are two 100-variate (p ¼ 100) GCCM classes;

unit variances; correlations between all the variablesr ¼

0.3,m1 ¼ ¹ m2 ¼ 1.0423 (1,1,...,1).P(E)
` ¼ P(F)

` ¼ 0.03, and
p* < 1.05 (definition ofp* in Eq. (5)).
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D2 are two 100-variate (p ¼ 100) GCCM classes; unit
variances; correlations between all the variablesr ¼

¹0.0101,m1 ¼ ¹ m2 ¼ 0.00188053 (1,1,...,1).P(E)
` ¼

P(F)
` ¼ 0.03, andp* < 1010.

3. Generalization errors of parametric classifiers

3.1. The Euclidean distance classifier (EDC)

In Raudys (1967), the generalization error was first con-
sidered asymptotically, when the dimensionalityp and the
learning-set sizesN1, N2 are large and increasing simulta-
neously. In statistical mechanics, this is called the ‘‘thermo-
dynamic limit’’. An increase in p implies that the
conditional distribution of the discriminant function—the
random variableg(X,X̄ (1),X̄ (2)|X [ p i)—asymptotically
tends to the Gaussian distribution, and allows us to obtain
very simple, but accurate estimates. The result for EDC is
unknown, and in fact is unavailable for Western researchers.
Therefore we repeat the main steps of its derivation.

We consider N1 þ N2 learning set vectors
X(1)

1 ,X(1)
2 ,…,X(1)

N1
,X(2)

1 ,…,X(2)
N2

as random vectors. Then we
have to consider the discriminant function gE(X,X̄ (1),X̄ð2Þ

jX
[ p i) as a random variable that depends on three independent
p-variate random vectorsX, X̄ (1) andX̄ (2) (in order to stress
that the variables are considered as random ones, it is com-
mon in statistics to denote them by capital letters). Then the
expected PMC (mean generalization error) can be written as a
sum of two conditional probabilities:

EP(E)
N ¼ q1Prob{gE(X, X̄(1), X̄(2)) , 0lX [ p1}

þ q2Prob{gE(X, X̄(1), X̄(2)) $ 0lX [ p2} , (2)

whereq1 denotesa priori probabilities of classp1, andq2 ¼

1 ¹ q1.
Asymptotically, whenp and N1, N2 are increasing, the

expected probability of misclassification (the generalization
error) is

EP(E)
N ¼ q1F ¹

E[g(X,X(1), X(2))lX [ p1]
V[g(X,X(1), X(2))lX [ p1]

� �

þ q2F
E[g(X,X(1), X(2))lX [ p2]
V[g(X,X(1), X(2))lX [ p2]

� �
, (3)

where E denotes the expectation, and V the variance, with
respect to three independent random vectorsX,X̄ (1), X̄ (2).

Let N2 ¼ N1 ¼ N, q2 ¼ q1 ¼ 0.5, and the classes be
multivariate Gaussian with different means and a common
covariance matrix: N(m1, S), N(m2, S)—GCCM model.

Note that while designing EDC one assumes the covar-
iance matrixS ¼ Ij2, and in the analysis of the general-
ization error, we consider the case where the probabilistic
model of the pattern classes isdifferent, i.e., S Þ Ij2. In
statistical mechanics the difference in mathematical

descriptions is called an ‘‘unfaithful’’ (unrealizable)
model. In our statistical approach, the term ‘‘unrealizable’’
is not exact, since there exist models whereS Þ Ij2, but the
asymptotic PMC of the Euclidean distance classifier coin-
cides with the Bayes error.

For the GCCM model andN2 ¼ N1, the distribution of DF
gE(X, X̄ (1), X̄ (2)) can be analysed as the distribution of a
vector product of two independent random vectors,Z and
Y, i.e., gE(X, X̄ (1), X̄ (2)) ¼ Z9Y is the difference of two
quadratic forms of Gaussian random variable. We have
denoted hereZ ¼ X ¹ 1

2(X̄
(1)

þ X̄(2)), Z,N(m,S(1þ 1
2N)),

Y ¼ X̄ (1) ¹ X̄ (2), Y,N(m;S 2
N), m1 ¹ m2 ¼ m. Taking into

account that (Z9Y)2 ¼ tr(Z9YZ 9Y) ¼ tr(YY 9ZZ 9), we get

E[g(X, X̄(1), X̄(2))lX [ pi ] ¼ ( ¹ 1)i ¹ 1 1
2
m9m, (4a)

V[g(X, X̄(1), X̄(2))lX [ pi ] ¼ m9Sm 1þ
1
N

� �

þ tr(S2)
2
N

1þ
1

2N

� �
:, (4b)

An expression for the expected PMC follows directly from
Eqs. (3), (4a) and (4b):

EP(E)
N < F ¹

1
2
m9m����������������������������������������������������������������

m9Sm 1þ
1
N

� �
þ trS2 1þ

1
2N

� �s
8>>>><>>>>:

9>>>>=>>>>;:

In the thermodynamic limit, ford * ¼ const., and largep and
N, ignoring the terms of order

1
N2 and

p

N2, one obtains a
very simple expression

EP(E)
N < F ¹

dp

2
1�����
Tp

m

p( )
, (5)

whered * ¼
m9m����������
m9Sm

p , Tp
m ¼ 1þ

2pp

dp2N
, p* ¼

(m9m)2(trS2)
(m9Sm)2 .

Asymptotically, asN → ` we obtain the asymptotic PMC
of the Euclidean distance classifier:P(E)

` ¼ F{ ¹ d */2}. For
the spherical Gaussian case we haveS ¼ Ij2. Thend * ¼ d,
whered2 ¼ (m1 ¹ m2)9S

¹1(m1 ¹ m2) is the squared Mahala-
nobis distance. In a more general case (whenS Þ Ij2), d * #
d. Then the asymptotic errorP(E)

` can be larger than the
asymptotic PMC obtained for the standard Fisher DFP(F)

`

¼ F{ ¹ d/2}. For example, for 20-variate Gaussian dataC,
d * ¼ 3.7616,d ¼ 4.65,P(E)

` ¼ 0.03 andP(F)
` ¼ 0.01. There

exist situations where the features are correlated, butP(E)
` ¼

P(F)
` . Two such examples are presented in Fig. 1 (pairs of the

classesp3 andp4, p3 andp5). Two other examples are the
pattern classesD1 andD2, with d * ¼ d ¼ 3.76, andP(E)

` ¼

P(F)
` ¼ 0.03. Since the parameterd * controls the asymptotic

PMC, we call it a modified (effective) Mahalanobis
distance.

In the spherical Gaussian case,p* ¼ p. The EDC can be
trained with comparatively small learning-sets in this case.
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For example, forp ¼ 20,d ¼ 4.65 from Eq. (5) we calculate:
EP(E)

N < 0.0469 forN ¼ 15; EP(E)
N < 0.0400 forN ¼ 25;

EP(E)
N < 0.0362 forN ¼ 40, andEP(E)

N < 0.033 forN ¼ 80
(graph 1 in Fig. 2). It is important to stress that in special
cases, whereS Þ Ij2, theoretically 1# p* # `. It means
that hypothetically there exist situations where the EDC is
either very insensitive to the learning-set size or, on the
contrary, very sensitive to the learning-set size.

When p* ¼ 1 we call the modelthe most favourable
distributionsof Gaussian pattern classes for the EDC. An
example of densities of such a type is presented in Fig. 1
(pairs of the classesp3 andp5). Another example is the 100-
variate dataD1 with p* < 1.05. Because of the small

effective dimensionality for this specific choice of para-
meters, we can train the SLP on very small learning-sets.
It follows from Eq. (5) thatEP(E)

N ¼ 0.0318 forN ¼ 5, andd *

¼ 3.76. We see that for this very favourable case, in spite of
the high formal number of variables (p ¼ 100), only five
vectors per class are sufficient to train the EDC perfectly.

Hypothetically, there exist models wherep* → `. We call
such amodel the least favourable distributionsof pattern
classes for EDC. An example of densities of such a type is
presented in Fig. 1 (pairs of the classesp3 andp4). Another
example is 100-variate dataD2 with p* < 1010. Even an
insignificant deviation in sample means̄x (1), x̄ (2) causes a
critical rotation of the decision boundary and a distressing
increase in the generalisation error. From Eq. (5) we calcu-
lateEP(E)

N ¼ 0.4997 forN ¼ 200,p* ¼ 1010, andd * ¼ 3.76.
In theory,p* can be close to infinity. Thus, forq2 ¼ q1 ¼ 0.5,
and any number of learning observations the generalization
error of the EDC is close to 0.5. The parameterp* controls
the sensitivity of the EDC to the learning-set size. There-
fore, we have called ita modified(effective) dimensionality
(Raudys, 1967).

Consider the model GCCMr in which the covariance
matrix S r can be represented asS r ¼ G9DG, whereG is a
p 3 p orthonormal matrix of eigenvalues ofS r, andD is a
p 3 p diagonal matrix of the eigenvectors, such that

D ¼
I r 0

0 eIp¹ r

" #
;

andI r is r 3 r identity matrix,I p¹r is a (p ¹ r) 3 (p ¹

r) identity matrix, ande is a small positive constant, such
that (p ¹ r)e p 1. Let

m9G9 ¼ m9
g

g2

" #
9 ¼ ðm9;m29Þ;

where absolute values of componentsm2j of the (p¹ r)-
variate vectorm2 are very small:m2j p e, and can be
ignored. This model implies that the distribution of the vec-
tor X lies in a subspace of dimensionalityr. We say that
such data are ofan intrinsic dimensionality, equal tor. The
effective dimensionality of such data

p p ¼
(m9m)2(trS2

r )
(m9Srm)2 ¼

(m9G9Gm)2(trGSrG9GSrG9)
(m9G9GSrG9Gm)2

¼
(m9m)2(trD2)

(m9Dm)2 ¼ r

The intrinsic dimensionality of the multivariate data model
with p* ¼ 1, discussed above, is equal to 1. We see that an
increase in the generalization error of the EDC depends not
on the formal, but on the intrinsic dimensionality of the data.
In practice, most often the pattern vectors lie in a nonlinear
subspace of lower dimensionality, but the variability of the
other p ¹ r dimensions is not extremely small, i.e., the
condition (p ¹ r)e p 1 is not fulfilled. Then we have inter-
mediate cases.

Fig. 1. Effect of a configuration of GCCM model on the effective dimen-
sionalityp*: classes p1 and p2—p* ¼ p, classes p3 and p4—p* q p, classes
p4 and p5—p* q p.

Fig. 2. The ‘‘scissors effect’’. The generalization error versusN, the learn-
ing set size: (1) Euclidean distance classifier—Hebb algorithm—forp* ¼

20; (2) Fisher classifier—adaline—(graphs from Raudys, 1970); (3) Fisher
classifier with pseudoinversion.
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We need to know only the difference in sample means in
order to find the weight vector,w, of EDC. It is, in fact, the
same weight vector found by the Hebb training rule (see,
e.g., Barkai et al., 1993). For spherical Gaussian patterns,
Eq. (5) is in fact identical to that derived by the statistical
mechanics approach (Barkai et al., 1993; Meir, 1995).

As a general conclusion, we can say thatthe sensitivity of
EDC to the learning-set size strongly depends on the data.
In principle, the sensitivity can be very low, but it can also
be extremely high. In practical problems, however, we sel-
dom have cases similar to the least favourable or to the least
unfavourable ones just discussed.

3.2. The standard Fisher linear discriminant function

The number of parameters to be estimated from the
learning-set is much larger than for the EDC: we need to
estimate 2p components of the mean vectors for EDC, and
we have to estimatep(p þ 1)/2 components of the covari-
ance matrix for the Fisher linear DF, in addition. For the
GCCM model, whenN2 ¼ N1 ¼ N, q2 ¼ q1, the general-
ization error of the above classifier (ford2 ¼ const., and
large N and largep) can be asymptotically expressed as
(Deev, 1970, 1972); Raudys, 1972)

EP(F)
N < F ¹

d

2
1����������
TmTS

p( )
, (6)

where d2 is the squared Mahalanobis distance, the term

Tm ¼ 1 þ
2p

d2N
arises from inexact sample estimation of the

mean vectors of the classes, and the term TS ¼ 1 þ
p

2N ¹ p
arises from inexact sample estimation of the covariance
matrix. In spite of its simplicity, Eq. (6) yields very exact values
for the GCCM classes (Pikelis, 1976; Wyman et al., 1990).

If p → 2N, the estimate of the covariance matrix becomes
very inexact, and the term TS increases without limit. Then
the expected PMC tends to 0.5 (whenq2 ¼ q1 ¼ 0.5). When
N increases, andp remains constant, the expected error
tends to its asymptotic valueP(F)

` . For example, for the
20-variate Gaussian model GCCM withd ¼ 4.653,P(F)

` ¼

0.01 from Eq. (6) we calculate:EP(F)
N < 0.1094 for sample

sizeN ¼ 15;EP(F)
N < 0.0441 forN ¼ 25;EP(F)

N < 0.0259 for
N ¼ 40, andEP(F)

N < 0.0163 forN ¼ 80 (graph 2 in Fig. 2).
By the example given in Fig. 1, we see that for small

learning sets (up toN < 30) it is preferable to use a simple
structured Euclidean distance classifier. Furthermore, for
large learning sets (overN < 30) it is preferable to use a
complex structured Fisher classifier. It is the ‘‘scissors
effect’’ known in Statistical pattern recognition already for
25 years: in small learning-set cases, it is often preferable to
use simple structured classification rules instead of complex
ones, and, vice versa, in large learning-set cases, complex
classifiers can be used more efficiently. The learning
curves EPð1Þ

N ¼ f1ðNÞ and EPð2Þ
N ¼ f2ðNÞ of two classifiers

intersect and resemble scissors, see Fig. 2, where for
small learning-set sizes the graph for the EDC (1) is sig-
nificantly lower than graph for the Fisher DF (2) and
graph for the ‘‘pseudo Fisher’’ classifier (3). Note that the
Hebb training rule is, in fact, the EDC, and the adaline is
the Fisher linear DF. Thus, for small learning-sets it is
preferable to use the Hebb rule, and for large ones the
adaline.

3.3. The Fisher classifier with the pseudo-inverse
covariance matrix

The generalization error can be understood on con-
sidering that in the pseudo-inverse approach, the feature
space is rotated by means of a certain orthogonal transfor-
mationY ¼ TX and afterwards classified by a ‘‘diagonal’’
classifier in anr-variate space of new directions correspond-
ing to r non-zero eigen-values of the sample covariance
matrix S (r ¼ N1 þ N2 ¹ 2 is the rank of the sample
covariance matrixS). In this classifier design model, it is
assumed that a covariance matrix of the vectorY ¼ TX is a
diagonal matrixd, composed of variances of the vectorY—
the r non-zero eigenvaluesd1,d2,...,dr of the matrixS. This
is not the optimal way to design a classifier in the very small
learning-set case. The expected error of the ‘‘diagonal’’
classifier is expressed by the equation

EP(PF)
N < F

d
������
r=p

p
2

1���������������������������������������
(1þ g2)Tm þg2 3d2

4Np

s
8>>>><>>>>:

9>>>>=>>>>;, (7)

where
g ¼

�����
Vd

p
/Ed; Ed, Vd are respectively mean and variance

of 1/d, andd is a randomly chosen eigenvalue of the matrix
Shaving Wishart W(I p, n¹ 2) distribution. Eq. (7) has some
similarity with Eq. (5). To findg we have to calculate
moments of the inversion of eigenvalues of the random
Wishart W(I p,n ¹ 2) matrix (Raudys and Duin, 1998).
With an increase in the learning-set sizen from 1 up top,
the termsr/p andg are increasing, e.g., forp ¼ 20 we have:
g ¼ 0.3247 forn ¼ 3,g ¼ 1.03 forn ¼ 11, andg ¼ 9.75 for
n ¼ 21. In the nominator of Eq. (7), the termr/p tends to
decrease the classification error. In the denominator of Eq.
(7), the termg tends to increase the generalization error.
Numerical calculations by using Eq. (7) show an interesting
and unexpected behaviour of the classification error: with an
increase in the learning set sizeN, the generalization error
decreases at first, reaches the minimum, and afterwards
begins increasing (see graph 3 in Fig. 2). The minimal
error is obtained forN ¼ p/4 (n ¼ p/2) and the maximal
errors are obtained forN ¼ p/2 (n ¼ p). It is a consequence
of non-optimality of the plug-in pseudo Fisher classifier. Ifn
. p, we obtain the Fisher linear DF, and the expected error
regularly decreases with an increase inN.
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3.4. Regularized linear discriminant analysis

When calculating the weights of the linear discriminant
function one usesSRDA ¼ Sþ lI instead of the conventional
sample estimateS. Positive termsl added to each diagonal
element of the covariance matrix help to invert the covar-
iance matrix and act as regularizers. Asymptotically, asp
and N increase, the distribution of the random variable
gRDA(X, X̄ (1), X̄ (2), S|X [ p i) tends to a Gaussian. To obtain
an analytical expression for the expected PMC, we have
used the first two terms of the Taylor series expansion of
(S þ lI )¹1 ¼ S¹1 þ l2S¹2 þ ..., calculated mixed second-
and higher-order moments of an inverse covariance matrix
S¹1. After some simple but tedious algebra we obtained (for
details see Raudys and Skurikhina, 1994)

EP(RDA)
N < F ¹

dl

2

����������������
1þ lTl

p ��������
TmS

p( )
, (8)

where

d2
l ¼

(m9(S þ lI )¹ 1m)2

m9(S þ lI )¹ 1S(S þ lI )¹ 1m
;

the termTl is a certain function ofS andm ¼ m1 ¹ m2.
As

N → `;EPN
RDA → P(RDA)

` ¼ F ¹
dl

2

� �
:

An increase in the regularization parameterl increases
the asymptotic errorP(RDA)

` . The termTl, is trying to reduce
the negative influence ofTS, the term responsible for esti-
mation of the covariance matrix. Thus, the regularization
can improve the small sample properties of the classifier.
Therefore with an increase inl, the generalization error
decreases at first, and afterwards begins increasing. The
optimal value ofl decreases with an increase in the learn-
ing-set size (Raudys and Skurikhina, 1994). For the GCCM
model, after optimization with respect tol, the resulting
generalization error is smaller than both the generalization
error of the Euclidean distance classifier and that of Fisher
and pseudo Fisher.

3.5. Generalized discriminant analysis

No theoretical results have been obtained yet on the
generalization error of the generalized robust Fisher linear
classifier. Papers and a monograph of Kharin (1992) analyse
robust statistical classifiers where the learning-set of each
class is contaminated by vectors of the opposite pattern
class.

4. Generalization of nonparametric classifiers

4.1. The minimum empirical error classifier

In the analysis of the Euclidean distance classifier, we

have seen that there existfavourable and unfavourable dis-
tributionsof the random vectorX. A similar situation arises
in the analysis of small sample properties of nonparametric
algorithms.

Let us consider the following model of real multivariate
distributions asthe favourable case. Suppose, the pattern
vectors are distributed on a straight line in multivariate fea-
ture space. Let the first class vectors be distributed in the
interval (A1,A2) on this line, and the second class vectors be
distributed in the interval (B1,B2). The classes do not over-
lap, and Euclidean distances |A1,A2| , |A2,B1|, |B1,B2| ,
|A2,B1| (see Fig. 3).

Suppose now, that only one observation per class is avail-
able for training—PA and PB. Let us design a linear classi-
fier with zero empirical error and the maximum margin
between the discriminant hyperplane and both training vec-
tors. Obviously, the linear decision boundary C–C9 w’X þ

wo ¼ 0 will intersect the interval (A2,B1), and for this model
of the pattern classes the generalization error will be zero.
This provides a veryfavourabledistribution of the pattern
classes. Possibly, itis the most favourable case. It has a
configuration very similar to the distribution of the classes
p3 and p5 in Fig. 1, the most favourable Gaussian
distribution for the Euclidean distance classifier.

In order to obtain low generalization errors one needs
many more training examplesin unfavourable casesof dis-
tributions of the pattern classes. The classesp3 andp4 in
Fig. 1 represent the unfavourable case for the EDC. Such a
configuration of the class conditional densities is also
unfavourable for the minimum empirical error classifier
design. The upper bounds for the true and estimated classi-
fication errors of the minimum empirical error classifier
indicate that, in theory, very ‘‘bad’’ distributions of pattern
classes can occur. Therefore in practice it is important to
obtain results for intermediate cases.

In Raudys (1993) an analytical expression for the mean
generalization error of the zero empirical error (ZEE) linear
classifier (a particular case of the minimum empirical error
classifier) was obtained for an intermediate case—‘‘a more
realistic situation’’—a model of two spherical Gaussian
distributions. A hypothetical ‘‘random search’’ (Monte-
Carlo) training procedure was analysed theoretically.
Here, one repeatedly generates many random discriminant
hyperplaneswo þ w’x ¼ 0 according to a particular prior
distribution of the weightswo, w, defined by the particulara
priori density of the weightsqprior(wo,w). One selects only

Fig. 3. The ‘‘most favourable’’ distribution of two pattern classes in the
multivariate space.
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those hyperplanes that classify all learning-set vectors with-
out error, and the margin (the Euclidean distance between
the discriminant hyperplane and the learning vector closest
to it) exceedsD. In the statistical mechanics approach, a
randomized training procedure of such type is called ‘‘the
Gibbs algorithm’’. It is one possible training method
from a variety of optimization techniques that can be
used to find the weight vector. It is not the best choice in
practice; however, it is very convenient for analytical inves-
tigations.

When D ¼ 0, we have the zero empirical error (ZEE)
classifier. WhenD . 0, we have the margin classifier. In
Raudys (1993)a mean expected probability of misclassifi-
cation EPN of the pattern vectors that did not participate in
the training was considered. The expectation was taken both
with respect to 2N random training vectors and to the ran-
dom character of generatingp þ 1 weights. When thea
priori distributionqprior(wo,w) of the (p þ 1)-variate weight
vector wo, w is spherical Gaussian, only vaguea priori
information on the weights is used to design the classifica-
tion rule. Thus, the classification rule is designed only on the
information contained in the learning-set data.

Suppose, now, thatadditional informationon the weights
wo, w is available. Let this vector be generated not at ran-
dom, but found froman additional data-setby using the
Euclidean distance classifier. In Part I of this paper, it was
shown that such a weight vector can be obtained in batch-
mode training the nonlinear SLP after the first iteration.
Then theprior distribution qprior(wo,w) will be narrower
than the distribution obtained in the case of the random
weight generation.

The above model allows us to calculate the mean
expected classification error using the technique ofnumer-
ical integration. The analysis of numerical results obtained
for the spherical Gaussian model indicates that an increase
in the expected classification error of the linear classifiers is
in fact a function of the ratiop/N and distanced, only. It
depends on the prior distributionqprior(wo,w) and the dis-
tance between the pattern classesd. In Table 1, for 50-
variate spherical Gaussian centred classes we present a

relative increase in the mean expected classification error,
the learning quantity, the ratiok ¼ EPN /P`, the zero empiri-
cal error classifier with: a) random; and b) EDC priors (the
data from Raudys and Diciunas, 1996). For comparison in
the same Table, we presentk values for two parametric
classifiers (the Euclidean distance and the Fisher one; data
from Raudys and Pikelis, 1980).

Clearly, the learning quantityk depends on the type of
classifier, the ratioN/p, and d, the distance between the
pattern classes. The Euclidean distance classifier enables
us to design a classification rule in cases where the number
of learning vectorsn ¼ 2N is smaller than the number of
features. However, this classifier makes assumptions that
the components of the feature vectorX are mutually inde-
pendent. As a result, this classifier will not work well in
certain applications. The Fisher DF allows us to evaluate
the dependencies between the features but requires many
more learning-set vectors. The zero empirical error classifier
allows us to take into account statistical dependencies
between the features and, at the same time, can be used in
cases where the number of dimensions is higher than the
number of learning examples.

Comparison of the last six columns of Table 1 with the
previous five columns indicates thatthe favourable (tight)
prior distribution of the weights can reduce the generaliza-
tion error dramatically. Recall that this conclusion was
obtained for the spherical Gaussian model of the pattern
classes.

In order to analyse the character of the learning curves we
used the data in Table 1 to plot the generalization error
versus(p/N)S for different values of parameterS. For large
sample sizes (when 2Nq p) we found that an increase in the
generalization errorEPN ¹ P` of the Fisher classifier (ada-
line rule) is proportional top/N. This agrees with the asymp-
totical universal learning curves derived by Amari and
Murata (1993). For very smallp/N, however (whenn ¼

N/2 approachesp), an increase in the generalization error
of the Fisher classifier is proportional to (p/N)2, and only for
very largeN we have the linear relationship.

We found that the increase in the mean expected

Table 1
Learning quantity, ratiok ¼ MEPN/MEPN=P` of the Euclidean distance E, Fisher F and the zero empirical error (with random and ‘‘Euclidean’’ prior weights)
classifiersversus N/p, learning set size/dimensionality ratio

E F ZEE with Gaussian priors ZEE with Euclidean priors N/p

1.82 2.34 3.09 3.66 4.22 2.16 3.76 10.0 25.1 71.2 1.63 1.99 2.70 3.47 4.42 0.16
1.70 2.03 2.41 2.65 2.87 2.04 3.43 8.58 20.7 56.9 1.48 1.69 2.12 2.57 3.08 0.24
1.54 1.70 1.84 1.92 1.99 1.88 2.93 6.77 15.3 41.7 1.29 1.40 1.66 1.91 2.16 0.40
1.43 1.50 1.55 1.58 1.61 2.05 3.39 8.40 19.7 52.0 1.74 2.57 5.58 12.3 31.7 1.17 1.25 1.43 1.60 1.77 0.60
1.30 1.32 1.33 1.34 1.35 1.62 2.15 3.61 5.95 10.6 1.56 2.16 4.34 9.13 22.5 1.08 1.13 1.26 1.37 1.48 1.0
1.18 1.17 1.16 1.16 1.17 1.33 1.51 1.93 2.47 3.27 1.35 1.73 3.09 6.04 14.1 1.03 1.06 1.13 1.21 1.27 2.0
1.08 1.07 1.06 1.06 1.06 1.14 1.19 1.31 1.44 1.61 1.16 1.32 2.06 3.59 7.68 1.01 1.02 1.07 1.10 1.14 5.0
1.04 1.03 1.03 1.03 1.03 1.07 1.09 1.15 1.20 1.27 1.08 1.19 1.59 2.53 4.98 1.01 1.01 1.03 1.06 1.09 10.0
1.02 1.02 1.02 1.02 1.02 1.04 1.05 1.07 1.10 1.13 1.04 1.10 1.34 1.86 3.35 1.01 1.01 1.02 1.04 1.06 20.0
1.01 1.01 1.01 1.01 1.01 1.01 1.02 1.03 1.04 1.05 1.02 1.04 1.15 1.39 2.11 1.01 1.01 1.02 1.03 1.04 50.0
1.68 2.56 3.76 4.65 5.50 1.68 2.56 3.76 4.65 5.50 1.68 2.56 3.76 4.65 5.50 1.68 2.56 3.76 4.65 5.50d

0.2 0.1 0.03 0.01 0.003 0.2 0.1 0.03 0.01 0.003 0.2 0.1 0.03 0.01 0.003 0.2 0.1 0.03 0.01 0.003P`
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generalization error of the minimum empirical error classi-
fier is proportional to (p/N)S. The order parameterSdepends
onp/N andd. We haveS< 0.1 ford ¼ 2.56, andS< 0.4 for
d ¼ 4.56, whenp/N is large. ParameterS increases withN:
we haveS< 0.7 for d ¼ 4.56, and smallp/N. According to
the asymptotical universal learning curve theory, for very
largeN the parameterS approaches 1. Note, the results for
the ZEE classifier with Gaussian priors in Table 1 are
obtainable from the approximate formula:

MEP(ZEE)
N < F ¹

d

2
1��������������������������������������������������������

1þ (1:6þ 0:18d)
p
N

� �1:8¹ d=5
r

8>><>>:
9>>=>>;,

(9)
that can be compared with analogical formulae derived for
the parametric classifiers.

4.2. Intrinsic dimensionality

Consider the GCCMr model N(m1,Sr ), N(m2,Sr ) with r
nonzero eigenvalues ofS r, which has already been
considered in the previous section. This model implies
that the distribution of the vectorX lies in the subspace of
dimensionalityr. The effective dimensionality of such data
p* ¼ r, and for this model withthe intrinsic dimensionality
equal tor , p, the small learning-set properties of the zero
empirical error classifier can be analysed in ther-variate
space. In this space, ther-variate vectorY ¼ gX is spherical
Gaussian, and all the above conclusions derived for thep-
variate spherical Gaussian model are valid. For the GCCMr

model, the small sample properties of the ZEE classifier are
determined by the ratior/N, and not by the formal
dimensionality/sample size ratiop/N (for details see
Raudys, 1993).

4.3. Maximal margin classifier

The numerical calculations performed according analyti-
cal equations derived for the SGC model indicate that an
increase inD, the value of a bound for the margin,
diminishes the mean expected classification error. We pre-
sent six graphs: the mean expected errorMEPn versusD in
Fig. 4. The graphs are calculated for a random Gaussian
prior distribution of the weights, differentp/N, and two
values ofp. The theoretical results indicate that an increase
in the margin width can diminish the mean generalization
error (two to three times in the given example).

The mean expected classification error is derived as a
mean value averaged over those parts of learning-sets for
which it is possible to obtain margins larger thanD. There-
fore this estimate is valid only for certain learning-sets. In
the next section, we report experiments with the nonlinear
SLP, that show that in spite of the fact that, on average, the
mean generalization error decreases withD, for particular
Gaussian learning-sets the generalization error has a

peaking behaviour, i.e., it begins to increase when the mar-
gin becomes too large.

Clearly, in the spherical Gaussian case, the generalization
error of the Euclidean distance classifier is much lower than
that of the Fisher DF and ZEE classifier. This can be
explained by the fact that while designing EDC, one
estimates only sample mean vectors and ignores covar-
iances. In order to design the Fisher DF one also needs to
estimate thep 3 p covariance matrix. For a small number of
features (whenp p 2N) the generalization error of the
Fisher classifier is lower than that of the zero empirical
error classifier. However, for a large number of features
(when p is close to 2N or exceeds 2N), the minimum
empirical error classifier nearly to outperforms the Fisher
classifier.

As a general conclusionwe can state that the nonpara-
metric approach for designing the linear classifier generates
reliable rules even in cases where the number of features is
significantly larger than the number of training vectors. We
do not need to estimate the class global parametersS andm1,
m2, the covariance matrix, and the means, when we reject the
assumption that the classes are Gaussian The estimation of
these parameters in a high-dimensional case is not favoured
in classifier design. Additional information supplied as a
prior distributionqprior(wo,w) can reduce the generalization
error dramatically.

5. Learning-set size and generalization error of single-
layer perceptrons. Simulation study

In Part I, we have demonstrated that there is no unique
nonlinear SLP classifier. The SLP appears equivalent to a
sequence of statistical classifiers. Which particular type of

Fig. 4. The mean generalization error of the maximum margin classifier
versusD, the bound for the margin: (1)N ¼ p/4; (2) N ¼ p/2; (3) N ¼ p.
Spherical Gaussian classesd ¼ 3.76;p ¼ 20&200 (dots).
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classifier will be obtained depends on: the data, the cost
function to be minimized, the optimization technique and
its parameters, the stopping criteria. An objective of this
section is to show that the theoretical results presented in
Part I, and in the previous two sections, are valid for the
nonlinear SLP classifier. In our simulations, we have used
the GCCM and SGC data, the batch-mode BP training algo-
rithm, the cost function of the sum of squares with the
sigmoid activation function. At different moments of the
training process, we calculated the generalization error
analytically

PN ¼
1
2
F

w0 þ w9m1������������������
w9S¹ 1w

p( )
þ

1
2
F

w0 þ w9m2������������������
w9S¹ 1w

p( )
: (10)

In most experiments, except when stated otherwise, the
conditions E were fulfilled. Most often we used the
target valuest1 ¼ 0 and t2 ¼ 1. Close targets, e.g.,t1 ¼

0.45 andt2 ¼ 0.55, make the sigmoid activation function
act as a linear function. Thus after minimizing the cost
function we obtain the standard Fisher DF. Therefore in
experiments with the non-limiting targets, we used:t1 ¼

0.1 and t2 ¼ 0.9, the target values recommended by
Rumelhart et al. (1986).

5.1. The SLP and parametric classifiers

Target values essentially influence the learning process
when the empirical classification error is small. In Fig. 5 we
plot the dependence of the generalization error on the num-
ber of iterationst for the 20-variate GCCM dataC. Both
graphs were obtained for one learning set withN ¼ 14
vectors from each class; however different target values
were used. To make the learning process faster we used a
slightly increasing learning-step:h ¼ 10*1.0005t. After the
first iteration we got EDC withPgen ¼ 0.058 in both cases.
At the beginning of training, the generalization error

decreases: there we have the regularized DA. The different
target values, however, lead to different classification rules
later: with targets ‘‘0.1&0.9’’ we are approaching the
standard Fisher DF withPgen ¼ 0.093; and with targets
‘‘0&1’’ we are approaching the maximal margin classifier
with a significantly smaller generalization error.

More information concerning the generalization error can
be obtained from average values of the generalization error.
We used the 20-variate GCCM dataC again, and compared
experimental learning curves of the SLP with those of the

Fig. 5. Effect of targets on the BP training process: the generalization
error versus t, the number of iterations. (1) targetst1 ¼ 0.1, t2 ¼ 0.9; (2)
t1 ¼ 0, t2 ¼ 1. 20–variate GCCM dataC; N ¼ 14.

Fig. 6. ‘‘Scissors effect’’ in practice: the average generalization errorversus
N. (a) The nonlinear SLP: (1) after the first iteration; (2a) after 500 itera-
tions (targets ‘‘0.1&0.9’’); (2b) after 100 iterations (targets ‘‘0&1’’); (4)
after the optimal number of iterations. (b) The statistical classifiers: (1)
EDC; (2) Fisher DF; (3) pseudo Fisher DF; (4) regularized DA for optimal
l. 20-variate GCCM dataC.
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EDC, the Fisher linear classifier and the regularized DA
with the optimal value of l (Fig. 6a and b). Each curve is
an average value obtained from the same 50 randomly
selected learning-sets.

In spite of the fact that the targets ‘‘0.1&0.9’’ are far from
being close, and force the sigmoid activation function to act
as a linear function, we see that the learning curve of the
nonlinear SLP exhibits a clearpeaking behaviourin the
interval (1, n , p). The shape of the SLP learning curve
with targets ‘‘0.1&0.9’’ (2a in Fig. 6a) resembles the experi-
mental and theoretical curves for the standard Fisher DF and
the Fisher DF with pseudo-inverse (2 and 3 in Fig. 6b—
simulation, and 2 and 3 in Fig. 2—theory). Both combina-
tions of the target values yield EDC after the first itera-
tion—the learning curves numbered by 1 in Fig. 6a and b
are identical, and both experimental curves coincide with
the theoretical one (1 in Fig. 2).

For n . 1
2 p, the experimental learning curve 2 in Fig. 6b

becomes very close to the theoretical curve 2 for the Fisher
DF in Fig. 2. The same can be said about the experimental
learning curve 4 in Fig. 6a of the SLP after the optimal
number of iterationstopt (targets ‘‘0 and 1’’), and curve 4
in Fig. 6b for the regularized DA with the optimal value of
the regularization parameterlopt. To find the optimal values
topt, andlopt we used Eq. (9) to calculate the generalization
error. The learning curve 2b in Fig. 6a corresponds to targets
‘‘0&1’’. For this type of the data, the targets ‘‘0&1’’ allow
us to obtain an essentially smaller generalization error, and
to confirm our theoretical considerations as to the impor-
tance of choosing proper target values.

Fig. 6b demonstrates a clear ‘‘scissors effect’’: for small
learning-sets up toN < 30 it is preferable to use the simple
structured EDC than the complex Fisher linear DF, and,vice
versa; in large learning-set cases, the Fisher linear DF can
be used more efficiently. The same conclusion is valid for
the SLP: for small learning-sets it is preferable to train the
SLP for a short time, and,vice versa, in large learning-set
cases, one needs to use more iterations. Other regularizing
factors, such as target and learning-step values, operate
simultaneously, and the problem to find optimal values of
all these parameters is not easy.

Theoretical considerations on the effective dimensional-
ity p* of the EDC indicate situations where the SLP can be
trained perfectly on very small learning-sets. In Section 2
we have analysed an extreme case: the 100-variate GCCM
data modelD1 with the effective dimensionalityp* close to
1: p* < 1.05. Theoretical calculation gives the generaliza-
tion error of EDCEP(E)

N ¼ 0.0318. In a series of 10 experi-
ments with learning-sets containingfive100-variate vectors
from each class, we have obtained a very small generaliza-
tion error: the EDC yielded, on average, 0.039 error with
standard deviation 0.009. The same result was obtained for
the SLP after the first iteration.

The same theoretical considerations on the effective
dimensionalityp* indicate situations where is difficult to
train the SLP classifier. The 100-variate GCCM data

modelD2 with p* < 1010 is a perfect example. Theoretical
calculation gives the generalization error of EDCEP(E)

N ¼

0.4997. In a series of 10 experiments with learning-sets of
sizeN ¼ 200, we have obtained a very high generalization
error—the EDC yielded, on average, 0.4997 of the error.
After the first iteration, the SLP gave the same result. The
Fisher DF, however, yielded a ‘‘reasonable’’ error 0.058,
i.e., 1.93 times higher than the asymptotic errorP(E)

` ¼ 0.03.
This corresponds to Eq. (6), and Table 1 ford ¼ 3.76 and
N ¼ 2p. Note this type of almost singular data is a very hard
problem for BP training. In such a situation, a ‘‘decorrelat-
ing’’ transformation

Y ¼ TX (11)

is very helpful. In Eq. (11)T ¼ D¹1/2G, and G is an
orthonormalp 3 p matrix such thatGSG’ ¼ D (diagonal
matrix of the eigenvalues). Then, in a new spaceQY, again
we obtain the EDC after the first iteration; however, this
classification rule is equivalent to Fisher’s rule in the
original QX space.

5.2. The SLP and nonparametric classifiers

The weights of the nonlinear SLP are increasing when we
use limiting target values and have small empirical error.
The SLP then becomes similar to the minimum empirical
error and maximum margin classifiers. We demonstrate that
the theoretical results of the previous sections are consistent
with simulation studies.

In experiments, we use exactly the same type of data as in
the previous analytical study—the multivariate spherical
Gaussian data. In order to have possibility of increasing
the margin and analysing the influence of the margin
width on the generalization error, we have chosen a rela-
tively large Mahalanobis distanced ¼ 3.76 (the asymptotic
and Bayes errorPB ¼ 0.03), a small learning-set size (N ¼

100) and have used an exponentially increasing learning-
steph ¼ h0 3 1.1t.

In the previous section we have seen that in the random
search optimization (the Gibbs algorithm), the generaliza-
tion error essentially depends on the prior distribution of the
weight vector. Thus, one of the objectives of this subsection
is to verify whether the starting position W0(0), W (0) of the
weight vector can also be important for the accuracy of the
final position of the weight vector in the gradient search
procedure. In all our experiments so far, we fulfilled the
learning conditionsE, i.e., just after the first iteration we
used to obtain EDC. There are many theoretical arguments
that EDC is the best sample-based classification rule for
spherical Gaussian patterns. In order to overcome this com-
plication, nearly in all of the experiments, we initialized the
weights randomly: starting weights W0(0), W (0) were chosen
from the Gaussian distribution: (W0(0),W (0)9)9,N(0,j2I ).

Low and moderate values ofj2 lead to EDC, while very
high ones lead to an immediate saturation of the activation
function and can stop the training just after the first iteration.
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In order to choosej2 we calculated the variance V of a
double random variable W0(0) þ W (0)9X, where
(W0ð0Þ,Wð0Þ9)9,N(0,Ij2), and X,N(m i,I ). For sym-
metrically situated classes (m ¼ ¹ m1 ¼ m/2), variance
V{W 0(0) þ W (0)9X} ¼ j2(p þ 1 þ d2). This variance influ-
ences the saturation of the activation functiono(W0(0) þ

W (0)9X) and, consequently, affects the training process.
Hence, when analysing the influence of weight initialization
on the generalization error, we defined the initialization
variancej2 as a function of dimensionality:

j2 ¼ (ja)2 1

pþ 1þ d2: (12)

Thus, the coefficientja controls width of the weight initi-
alization interval.

Two graphs in Fig. 7 are typical of this type of experiment
with spherical Gaussian data. When starting fromzero
initial weights, we obtain the best sample-based classifier
(EDC) just after the first iteration. Therefore, we have a
constant increase in the generalization error later (graph
2). After starting from a distant,inexactinitial weight vec-
tor, the training process ‘‘corrects’’ the weight vector, and
therefore reduces the generalization error at first; however,
later on, it leads to the maximal margin classifier. This
classifier is far from being the best one for spherical Gaus-
sian patterns. Therefore, after reaching the minimum, we
obtain an increase and approach the learning curve for the
zero weight initialization: graph 1 (dots, 25th to 150th

iterations only). The minimum of graph 1 with the random
initialization is notably higher than the minimum of
generalization with zero weight initialization. This experi-
ment indicates that random initialization and a search for the
maximalmargin is not always the best strategy in classifier
design.

Comparisons of empirical and theoretical results are sum-
marized in Fig. 8. For spherical Gaussian data, with a
decrease in the value ofja, the generalization error
decreases, and approaches values obtained for EDC (graph
9—theory and simulation). High values ofja often cause an
immediate saturation of the activation function and a small
gradient of the cost function. Then the perceptron does not
learn or learns extremely slowly. In Fig. 8, for dimensionality
p ¼ 200 and a bound for the marginD ¼ 0, by ‘‘x’’ we
denoted average generalization errors for three different initi-
alization intervals defined byja: ja ¼ 5 (utmost upper point),
ja ¼ 2 (a point on graph 4) andja ¼ 0 (a point on graph 8).
All experimental graphs are average values obtained in 50
independent learning experiments. We have chosen the initi-
alization withja ¼ 2 as sufficiently wide, yielding a general-
ization error close to the theoretical values calculated for
randomprior distribution of the weights.

Graphs 1, 2 and 3 for the zero empirical error classifier
aretheoreticalones. They are calculated for a random Gaus-
sian prior distribution of weights, and the bound for the
marginD ¼ 0, 0.4 and 0.8, respectively. Graphs 4, 5 and
6 are experimentalones (initialization intervalja ¼ 2).
These graphs are average values found only from those
learning sets whose the margin values are higher thanD ¼

0, 0.4 and 0.8. Note that ford ¼ 3.76,N ¼ 100, andp . 100
we succeeded in obtaining zero empirical error and large
margins—M $ D ¼ 0.8—in almost all the experiments.

Both the theoretical and the simulation experiments indi-
cate that with an increase in margin widthon averagethe
generalization error decreases. Inall the individual training
experiments performed with different learning-sets, how-
ever, we noticed theovertraining effect—an excessive
growth of margin width increases the generalization error.
This is no surprise, since the maximum margin classifier is
not the optimal classification rule for spherical Gaussian
classes. The Euclidean distance classifier (SLP after the
first iteration) is the optimal sample-based classification
rule for this model of the pattern classes. Another explana-
tion of inconsistency of the theoretical and simulation
results is embodied in the fact that we calculated the expec-
tation of the generalization error over random Gaussian
prior distributionqprior(wo,w) in the previous section’s ‘‘ran-
dom search’’ optimization procedure (the Gibbs algorithm).
During gradient training, however, the weight vector (wo,w)
is not random: it moves according a certain trajectory,
where a distribution of values (wo,w) differs from the
Gaussian model. This means that the theoretical estimates
for the margin classifiers trained by the Gibbs algorithm
should be considered with a certain prudence.

Graph 7 in Fig. 8 is obtained for the case of random
weight initialization (ja ¼ 2) too, however, it represents
the mean generalization error calculated usingoptimal mar-
gin values Mopt evaluated for each particular learning-set.
To find Mopt, the optimal number of iterationstopt was eval-
uated from the minimum of the generalization error calcu-
lated analytically after each iteration. There we have used an

Fig. 7. Effect of weights initialization on SLP training: the generalization
error versus t, the number of iterations. Spherical Gaussian classes,d ¼

3.76,p ¼ 100,N ¼ 200. Varying learning-step n¼ 1.1t, random N(0,j2)
weight initialization: (1)j2 ¼ 0.1; (2)j2 ¼ 0.0.
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additional information. Therefore graph 7 is much lower
than any other graph depicted for the fixed value ofja ¼

2. It demonstrates a definite overtraining. We will return to
this effect in the following section.

Graphs 8, 9 and 10 in Fig. 8 are presented in order to
illustrate a positive influence of more exact (non-random)
weight initializationon SLP training. Graph 8 corresponds
to SLP, trained from zero initial weights, and the marginM
$ 0. In this situation, after the first training iteration we
obtain EDC—the optimal sample-based classification rule
for spherical Gaussian classes. Hence, roughly speaking,
SLP is initialized by the weights of the optimal classifier.
Graph 9 corresponds to the generalization error of EDC.
Graph 10 (the ZEE classifier) is calculated from the theore-
tical equations of the previous section for the case where the
prior distribution of weights was determined by EDC calcu-
lated from an additional learning-set. A comparison of
graph 8 with 4 indicates that a‘‘correct initialization’’
reduces the generalization error dramatically. This means
that the perceptron weights can store a large amount of
useful information.

The graphs in Fig. 8 indicate that the theoretical estimates
are rather close to the experimental ones for spherical Gaus-
sian classes. It is desirable to discuss the case of more gen-
eral distributions. The analysis of EDC has shown:
dependent onp*, the effective dimensionality, this classifier
can be trained even with very small learning-sets. In other
extreme cases,any number of learning vectors is insufficient
to train the EDC. Similar considerations are valid for other
parametric classifiers (e.g., the Fisher linear DF—adaline,

or the SLP with non-limit, close target values). In this sense,
the nonparametric minimum empirical error classifier is
more favourable: in principle, error bounds exist that give
lower estimates than that for EDC for extremely largep*.
However, extreme, unfavourable cases in both approaches
are not frequently met in real world problems.

6. Dynamics of the generalization error. Overtraining

The above theoretical results throw new light upon the
overtraining problem. The overtraining effect is caused by
two factors. First of all, it is a difference between the cost
function surfaces, obtained from the learning-set data, and
that obtained from the test-set data (a general population).
On the way from the starting vectorw (0) to the minimum of
the cost functionŵ, we can passw*, the minimum of the
cost function surface of the general population. On the
whole, the larger the difference, the larger the overtraining
effect can be expected to be. This factor, however, explains
only a proportion of the cases where the overtraining effect
is observed: dependent on the configuration of the triangle
(w (0),ŵ,w*) we can either observe or not observe the
overtraining.

In many simulation studies, we observe overtraining in all
training experiments. This can be explained by another fac-
tor: a change in the type of statistical classifier that occurs
with an increase in the number of iterations. One of these
classifiers appears to be the best one in the finite learning-set
size situation. Overtraining can appear when the weights are

Fig. 8. Generalization error of the zero empirical error and (maximum) margin classifiersversusdimensionality. Theoretical (1,2,3,9,10) and simulation
(4,5,6,7,8) results (average values from 50 independent experiments). Graphs 1 and 4, marginM $ 0; graphs 2 and 5, marginM $ 0.4; graphs 3 and 6, margin
M $ 0.8; 7, the optimal marginM obtained for the optimal number of iterationstoptimal; 8,ja ¼ 0.0 andM $ 0 (simulation); 9, EDC (theory and simulation); 10,
the ZEE classifier, ‘‘initialization by EDC’’, and the additional learning set (theory).
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small and the activation function acts as a linear one. Then
we move from the EDC towards the regularized DA and the
Fisher DF—see, for example, curve 1 in Fig. 5.

If the covariance matrices of the pattern classes are
different and/or the data is not Gaussian, then the Fisher
linear classifier is no longer an asymptotically optimal clas-
sification rule. In order to obtain the best linear classifier,
one needs to evaluate higher order statistical moments than
the mean vectors and the common covariance matrix. The
generalized DA and the minimum empirical error classifiers
can be the best choice in that case. Therefore the overtrain-
ing can occur later, when the weights are large and the
activation function acts as a nonlinear one. Then we move
from the Fisher classifier towards the generalized Fisher,
and further, towards the minimum empirical error classifier.
To do this, sometimes it is necessary to add a supplementary
anti-regularization term. In Part I we have demonstrated
such an example.

For special types of data sets, the best classification rule is
the maximal margin classifier. An example of such type of
data was presented in Fig. 2 in part I (dataB). In this case we
cannot get any overtraining at all. This model with ‘‘the
sharp edges’’, however, is not characteristic of the real
world problems. Most often we have ‘‘fuzzy’’ boundaries
of the pattern classes, and obtain the minimum earlier before
the maximal margin classifier is reached in SLP training
(see Fig. 7).

7. A few additional bibliographical remarks

Different fields (conventional multivariate statistics,
neural nets, computational learning theory, AI, machine
learning) address the supervised learning problem. All
these fields have their own jargon, their own mathematical
models, their own concerns, and their own results. And for
the most part they don’t interact (see the preface in the book
edited by Wolpert, 1995a). Hence, it is very difficult to
compare the results obtained by different approaches. An
attempt to do this was made by Wolpert in his paper
(Wolpert, 1995b), and in a dozen papers in the book men-
tioned. In addition to the remarks in Section 1, we try to
compare the results discussed in this paper with those
obtained by other approaches.

In multivariate analysis, there are two types of asymptotic
investigation of the accuracy of prediction and classification
procedures. In one of them, the dimensionalityp is kept
constant, and the sample sizen is increased. In another
one,n and p increase simultaneously. The analysis shows
that the second approach is much more accurate. In parti-
cular, the difference can be noticed for small values of the
classification error and the ratio n/p (Pikelis, 1976; Wyman
et al., 1990; Takeshita and Toriwaki, 1995). Our analysis
and that using statistical mechanics (Haussler et al., 1994)
showed a qualitative difference between the learning curves
of the ZEE classifier (see, e.g., Section 4.1) and the VC error

bounds, as well as universal learning curves obtained
asymptotically when onlyn → `.

A majority of the results obtained for the classification
problem (categorical ‘‘0–1’’ loss) agree with the results for
a continuous loss obtained by the statistical mechanics
approach. Sjoberg and Ljung (1992) have indicated that
regularized linear regression can be obtained as a con-
sequence of an increase in the number of iterations while
training the linear SLP. For the linear prediction model
y¼ w9x þ y, Hansen (1993) showed that the generalization
error

ēG ¼ j2
y 1þ hj2

x
2p

n¹ p
þ

p¹ 1
n¹ p

� �
, (13)

whereh is the learning-step parameter in the BP training,j2
y

is the variance of noisey, j2
x is the variance of an input

vector x in the modelx,N(0,Ij2
x). The term p¹ 1

n¹ p agrees
with the term TS in Eq. (6) and much earlier result of
Davisson (1965). The termhj2

x
2p

n¹ p arises due afinite
value of the learning-steph. A trade-off between the effi-
ciency of learning and the minimization of the classification
error was firstly analysed in Amari (1967), where the fol-
lowing fundamental result was obtained: the weight vector
ŵt of the linear perceptron trained by the gradient descent
training asymptotically is a Gaussian random variable. Its
mean value isŵ, the minimum of the cost function of the
sum of squares, and the covariance matrix ofŵt is propor-
tional toh. A similar result to Eq. (13) was also obtained by
Bös (1996) who analysed the accuracy of on-line and off-
line training. For the linear model it was shown that the
optimal selection ofh can help to obtain practically the
same accuracy in both the types of learning. Analogously
to the generalization error of the pseudo Fisher linear DF,
the presence of the minimum in the learning curve ‘‘gener-
alization versusthe learning-set size’’ was noticed in the
linear prediction by Krogh and Hertz (1992), and Bo¨s
(1996).

An important conclusion of this paper is that the charac-
ters of the learning curves depend on the data. For the sta-
tistical models this was first noticed in Raudys (1967). For
some models the character is determined by the intrinsic
dimensionality of the data, however, the definition ‘‘intrin-
sic dimensionality’’ is not unique. For example, for the
GCCMr model N(m1,Sr ), N(m2,S r) the effective dimension-
ality for the EDCp* ¼ r. However, the expected error of the
standard Fisher linear DF is determined by Eq. (6), and the
‘‘intrinsic dimensionality’’ r here plays no role. The con-
clusion that the data type strongly affects the character of
the learning curve is confirmed by modern approaches, too
(Kowalczyk, 1996). Possibly, it agrees with the universal
convergence theorem of Amari and Murata (1993)EHn ¼

H` þ L */(2n), where for the unfaithful (unrealizable) net-
work: L* ¼ trK ¹1G, whereK is the Hessian matrix, andG is
the Fisher information matrix. In this approach, unfortu-
nately, no explicit and/or numerical estimates have yet
been obtained for the GCCM model.
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In principle, the multivariate statistical analysis allows us
to obtain the generalization error for a wide variety of multi-
variate statistical models. For particular models, one obtains
absolutely exact results. However, there are two fundamen-
tal difficulties. First of all, true distribution densities of the
pattern classes are usually unknown. As we have seen, in
certain GCCM configurations the EDC can be extremely
sensitive or extremely insensitive to the learning-set size.
A similar situation arises with the standard Fisher linear DF,
where one can invent very unfaithful data models, where the
Fisher DF is extremely sensitive to the learning-set size.
One can argue that theoretical estimates for these classifiers
are useless. Nevertheless, simulations with real world data-
sets (see, e.g., Raudys and Pikelis, 1980) show the theoreti-
cal estimates derived for the Gaussian data to be fairly close
to the experimental results. The dependence of statistical
inference on unknown parameters of the models is a general
drawback of all statistical techniques, and will not be
discussed here.

The second drawback of statistical analysis is that the
analytical formulae are often very complex. Sitgreaves
(1961) derived the exact formula for the expected classifica-
tion error of the standard Fisher linear discriminant function
in the form of a five times infinite sum of products of certain
hypergeometric functions. We had similar problems with
the EDC, the quadratic DF, and the ZEE classifier. For the
ZEE classifier, after obtaining the exact formula we
obtained a simple asymptotic expansion (Raudys, 1993),
but its accuracy was low. A more exact expansion (Basaly-
kas et al., 1996) was accurate enough but required solution
of a certain differential equation. A similar numerical
difficulty was met by Meir (1995) who used the statistical
physics approach, and derived the generalization error
equations for three versions of SLP.

We have reviewed only a proportion of the known results.
In MLP classifier design, the weights of the hidden layer
affect all outputs. Thus they are common for all outputs of
the network. In statistics, it has been demonstrated that in
the thermodynamic limit, under certain conditions, para-
meters of probabilistic models that are common for all
classes asymptotically do not affect the increase in the gen-
eralization error (Raudys, 1972; Deev, 1974; Meshalkin and
Serdobolskij, 1978). This result is very important for MLP
analysis, where the weights of the hidden layer affect all the
outputs.

8. Concluding remarks

The analysis of the SLP as a dynamical process allowed
us to follow the neurone’s evolution: with an increase in the
number of iterations the weights gradually increase, the
actual slope of the activation function changes, and
gradually, step-by-step, seven known statistical classifiers
can be obtained. We stopped training at different moments
of time, used the multivariate statistical analysis techniques,

and found that small learning-set properties of SLP change
in time. Our simulations confirmed the theoretical
conclusions.

The main corollary of this paper is that, in order to obtain
the best generalization in the training process, one needs to
control the complexity of the SLP classifier. Recall that the
best type of the classifier depends on the learning-data: its
size and configuration. For simple-structured data (e.g.,
spherical Gaussian) and small learning-sets one needs to
use simple classifiers (e.g., EDC). For complex (e.g., non-
Gaussian data with statistically dependent variables, differ-
ent covariance matrices, multi-modal classes, etc.) and large
data-sets, one can and sometimes must use complex
classifiers such as the minimum empirical error one.

In Part I, we enumerated a number ofmeans which can
help to control the complexityof the SLP classifier. The
means are associated either with the type of cost function
or with the optimization procedure. In addition to the known
complexity control techniques, a few new ones were pro-
posed. We stressed the importance of the target values, a
gradual increase of the learning-step, and the antiregulariza-
tion term, if we wish to obtain the minimum empirical error
or the maximum margin classifiers. Another complexity
control technique is to move the centre of the learning-
data into the origin of coordinates. More suggestions for
transforming the datacan be givento make the data simple
(spherical), in which case the best classifier is the EDC. The
use of data transformations with a view to simplifying the
data structure is, in fact, anintroduction of new additional
information into the training process. If the information is
correct, it can help reduce the generalization error.

We became convinced thatsuccessful initializationof the
perceptron leads to the best results at the very beginning of
the training process, and helps to reduce the training time
and the generalization error. Therefore, in practice, it is
important to utilize this favourable peculiarity of the per-
ceptron. This can be done by introducing any prior informa-
tion into the weight initialization process. There are a
number of practical means to use the additional information
for the weight initialization and the data transformations.
These means will be discussed in subsequent publications.

Among other questions not discussed here are the MLP
and on-line training. No doubt, in on-line training, where the
learning vectors are presented in a sequence, we obtain the
simplest classifiers at first, and the most complex ones last.
Possibly, a proportion of the results discussed here can be
useful during on-line learning analysis. In the output layer,
the MLP classifier includes a nonlinear SLP. We believe
that the peculiarities of the nonlinear single-layer perceptron
will introduce themselves there. In training, after the non-
linear target transformation in the output layer, the hidden
layer neurones are fed by non limiting values of the targets.
In addition, the target values are different for each learning
vector. Our analysis has shown that the target values play an
especially important role in perceptron training. Moreover,
we have already mentioned that the weights of the hidden
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layer affect all outputs. Investigations in statistics have
indicated that the common parameters are less important.
These two pecularities of the MLP deserves a more attentive
investigation.
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