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Abstract

Unlike many other investigations on this topic, the present one does not consider the nonlinear SLP as a single special type of
classification rule. In SLP training we can obtain seven statistical classifiers of differing complexity: (1) the Euclidean distance classifier; |
the standard Fisher linear discriminant function (DF); (3) the Fisher linear DF with pseudo-inversion of the covariance matrix; (4) regulariz
linear discriminant analysis; (5) the generalized Fisher DF; (6) the minimum empirical error classifier; and (7) the maximum marg
classifier. A survey of earlier and new results, referring to relationships between the complexity of six classifiers, generalization err
and the number of learning examples, is presented. These relationships depend on the complexities of both the classifier and the data
knowledge indicates how to control the SLP classifier complexity purposefully by determining optimal values of the targets, learning-st
and its change in the training process, the number of iterations, and addition or subtraction of a regularization term. A correct initialization
weights, and a simplifying data structure can help to reduce the generalization@r®98 Elsevier Science Ltd. All rights reserved.
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1. Introduction number of research papers beginning with their 1968
paper, Vapnik and Chervonenkis (1968) developed the
In Part | (Raudys, 1998) we demonstrated that in the non- Cover capacity concept and obtained a number of upper
linear SLP training we can obtain seven statistical classifiers estimates for the generalization error.
of differing complexity. In theoretical analysis and applica- In the classical statistical approach, vectdp be classi-
tions, it is important to know the relationship between the fied into classesr, 7, is assumed to be a random variable
complexities of classifiers, their generalization properties, with a certain conditional probability density function
and the numbers of learning examples. A great deal of f(x|r;). To estimate the structure of the classifier and its
research work concerned with this relationship has beenweight vectorw, one uses assumptions on the probabilistic
performed during the last three decades. structure off(x|r;), and learning-set observation vectors. To
After proposing the first stochastic descent algorithm, analyse a dependence of the generalization error on the
Widrow and Hoff (1960) concluded that the sample size structure of the classifier and the learning-set size, one
required to achieve a given learning quality of the adaline uses standard statistical methods. This approach is consid-
type algorithm should increase in proportion to the number ered in his paper. Among other approaches, the most popu-
of inputs. Cover (1965) introduced a capacity—a measurelar are: a probable almost correct (PAC) framework
of the complexity, and showed that the generalization error (Valiant, 1984); the statistical mechanics approach; and
decreases in proportion t@n, dimensionality—learning-set  the information-theoretic and statistical approacbased
size ratio. on statistical models of conditional densiffo;jw,x;) of
Several approaches have been proposed to study the gerthe outputo; of the networkf(x;), an unconditional density,
eralization error in finite learning-set size situations. In a and the standard technique of asymptotic statistical infer-
ence, which is valid under regularity conditions such as the
existence of the moments of random variables and the exis-
mts for reprints should be sent to Sarunas Raudys. E-mail tence.of the Fisher information (_see, e.g., Levin et al., 1990;
raudys@Kktl.milt. Fax: (370) 2 729-209. Amari and Murata, 1993; Amari, 1993).
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In the latter stream of investigations, Amari et al. (1992) A great deal has been done on tgalysis of the small
showed that the average generalization eEBy, behaves  sample behaviour of statistical classifiess for the statis-
asymptotically ad /n, when the network is deterministic, tical-mechanics approach, classical statistical analysis also
the teacher signal is noiseless, and the network giving therequires knowledge of the input signal distributit{r|r;).
correct classification is uniquely specified by the This is the weak point of these approaches. However,
dimensional parametar’. In the case with an empty zone assumptions on the probabilistic structure of pattern classes
between the pattern classes, we have much better smaland on the parameters make it possible to obtain narrower
sample behaviourEP,~c/n?, where ¢ is an unknown error bounds. In some cases, absolutely exact results can be
constant. For a unique deterministic network trained by a obtained and only one question remains—how to use these
noisy teacherEP,~c/n? and for a stochastic network results in practice, where true distributions are unknown.
EP,~P. + c¢y/n. Amari and Murata (1993) proved funda- Rao (1949) was the first to emphasize, then, problems
mental universal convergence theorems for the average genwhen the number of learning examples was close to the
eralization and training errors measured as the predictive number of dimensions. The first numerical estimate of the
entropic lossEH, (stochastic complexity) evaluated by the difference between the generalization and asymptotic errors
expectation of— log f(olw,x) for an input—output pairq, 0). was obtained by numerical simulation at the Institute for
For the weights estimated by the maximum likelihood Numerical Analysis of University of California in Los
method or by the Bayes posterior distribution, it was proved Angeles (see references in Solomon, 1956). Sitgreaves
that an average generalization entropic error of the stochas{1961) derived the first exact formula for the expected clas-
tic network, EH, = H.. + L'/(2n), whereL" shows the sification error of the standard Fisher linear discriminant
complexity of the network. For the faithful (realizable) net- function (DF) in the form of a five-times infinite sum of
work, L" = L, and for the unfaithful (unrealizable) network, products of certain hypergeometric functions. Estes (1965)
L™ = trk ~*G, whereK is the Hessian matrix, an@ is the succeeded in calculating this sum, and Pikelis improved the
Fisher information matrix. For a deterministic dichotomy calculation accuracy and presented a table (Pikelis, 1974,

network,EH,, = L/n (Amari, 1993). see also Raudys and Pikelis, 1980, and references therein).
A characteristic property othe statistical-mechanics  The first asymptotic expansion for the expected classifica-
approachis the so-called thermodynamic limit, when tion error of the Fisher linear DF belongs to Okamoto

one examines the generalization error botmas « and (1963). It is obtained asymptotically, where— oo, and
asL — o, but at some fixed rate. This allows us to mean- often yields inaccurate values, if the dimensionalitys
ingfully investigate, for instance, an asymptotic generaliza- large. John (1961) represented the linear discriminant func-
tion error when the number of examples is half the number tion with the known covariance matrix as a difference of
of parameters, twice the number of parameters, 10 times thetwo independent chi-square variables, and expressed the
number of parameters, and so on (Haussler et al., 1994).expected error in a form of infinite sum. Raudys (1967)
This approach uses mathematical methods from statisticalused this result and derived the first simple asymptotic for-
mechanics, such as the replica symmetry technique and themula for the expected probability of misclassification
annealed approximation. There, a mean value of the ratio of(PMC) of an Euclidean distance classifier. Faithful and
two random variables is substituted by the ratio of mean unfaithful cases were first analysed here, as well as
values of these two random variables. The validity of this the “thermodynamic limit” where both the learning set
approximation is still open. For some specific models the sizen — « and the dimensionalitp — o°.
statistical-mechanic approach succeeds in obtaining the Deev (1970, 1972) formalized this thermodynamic limit
average generalization error, and its “phase transition” approach in a strictly mathematical way: it was formally
(sudden drops in the generalization error). For the determi- required thahh — o, p — o, p/n — constant and Mahala-
nistic dichotomy network, for example, a strong rigorous nobis distancé = const.Under this approach, several sub-
result was provedEH,, = 0.62 X L/n (Gyorgyi and Tishby, sequent asymptotic expansions were obtained for Gaussian
1990; Opper and Haussler, 1991). In certain cases, a differ-and non-Gaussian models. Two simple formulae for the
ent power law than tVor 1/h?was demonstrated (Haussler expected error for the standard Fisher linear DF were
et al., 1994; Seung et al., 1992). obtained in Deev (1970, 1972), and Raudys (1972). Further
An interesting and promising approach is thatombin- analysis (Pikelis, 1976; Wyman et al., 1990) showed that on
ing statistical physics with VC-boundthat allows us to the “thermodynamic limit” based asymptotic expansions
incorporate of some problem specific information. It was give very accurate estimates. This approach was used to
demonstrated that the introduction of limited information obtain the generalization error for the standard quadratic
on the distribution of error patterns to the classical-VC DF, linear and nonlinear classifiers for independent Gaus-
formalism permits much tighter bounds on learning curves. sian variables (Raudys, 1972), a block type and a tree type
The “phase transitions”, as well as significant drops in dependency between the Gaussian variables (Deev, 1974;
learning errors, can be modelled for low sizes of training Zarudskij, 1979), the classifier for independent categorical
samples for which the classical VC-bounds are void (see variables (Meshalkin, 1976), and the regularized DA
Kowalczyk, 1996, and references therein). (Raudys and Skurikhina, 1994). Meshalkin and Serdobolskij
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(1978) proved a fundamental limit theorem for arbitrary are valid for nonlinear SLP classifier analysis. Section 6 ana-
non-Gaussian classes. lyses overtraining and the dynamics of the SLP training pro-
The “curse of dimensionalitywas first described by  cess. Section 7 presents some additional references, and
Lbov (1966) and Hughes (1968), and thecissors effett compares the theoretical results with those obtained by other
was discovered in Raudys (1970), and Kanal and Chandra-approaches. Section 8 discusses practical aspects of using the-
sekaran (1971). See, also, Jain and Chandrasekaran (1982pretical knowledge presented in the paper: complexity control;
Raudys and Jain (1991): in small learning-set cases, it isdata transformations; weight initialization; and so on.
often preferable to use simple-structured classification
rules instead of complex ones, antte versa in large
learning-set cases, the complex classifiers can be used. Definitions and notation
more efficiently. In the statistical mechanics approach,
this effect was found much later (van Dam et al.,, 1994;  We analyse a nonlinear SLP dichotomy classifier that has
Meir, 1995). p inputs, and one outpudutput=o(w’x + w,), wherew,,
Typically, in the generalization error study, the SLP is w=(wy, W,,...W,)" are weights X = (X3,X,...Xp)" is the
analysed as a separate special specimen of the classificatiomput vector,0(g) is the nonlinear “tanh” activation func-
algorithm. Most often the activation function (or the pattern tion. To find the perceptron weights we minimize the cost
error function), it is assumed to be the linear or the threshold function
function; sometimes it is assumed to be a softlimiting one. 2 N
As a matter of fact in all connectionist analysis, the authors ¢qog; — 1 Z Z @ — ow'x® +wy))2 )
analyse the asymptotic behaviour of the perceptron for 2N +Np 55 :
individual models, paying too little attention to very small
learning-set situations, where the generalization error is high
in comparison with the asymptotic error. Too little attention is
paid to different mathematlpal models of the data. we uset® = 1 andt® = — 1 for the tanhg) activation
Unlike manyother investigations, the present paper does ; oo : :
. . . . function. We call these valudiniting ones. In simulations
not consider the nonlinear SLP as a single classifiée . . : . 1) @
analyse the perceptron as a dynamical process, and aw.'th. _the sigmoid function, we usg’” = 0 and” = 1
y percep ynamica’ p : P& imiting values), ort? = 0.1 andt® = 0.9. We analyse
special attention to the type of distribution of the pattern ] ) / ;
classes and the situations where the learning-set size isthe stanpiard total - gradient _delta 'ea“.'“”g rule (back-
small. In Part | we have shown that on the way between propagauo_n, BF.)) where the weight vector is adapted accord-
the starting point and the minimum of the cost function, the "2 (o the iterative rulaw .y, =W — 59cosi/ow, where
. . .. qis called a learning-step.
weights of the perceptron gradually increase, and decision
boundaries of SLP become identical or close to those of
seven statistical classifiers. The aim of Part Il is to show 2.1. Data types used in numerical calculations and
how a substantial number of results from standard multi- simulation studies
variate statistical analysis can be used in the generalization
error analysis of simple artificial neural nets. GCCM (Gaussian with common variance matrices) are two
The paper has been split into two parts. In Part |, we have p-variate Gaussian classes g\NE), N(u,,X) with different
shown that the nonlinear SLP is not a single classifier, it is a mean vectorg,, p, and a commop X p covariance matrix.
process. In this, Part Il, we analyse the small learning-set SGC are two multivariate spherical Gaussian classes
properties of several well known statistical classifiers which N(py,1), N(u2,1).
can be detected in nonlinear SLP training results. A great EP(hf) stands for the expected probability of misclassifica-
number of these results were published either in Russian ortion (PMC)—the mean generalization error—of the classi-
in conference proceedings, and remained unknown to thefier trained by method;, P is the asymptotic PMCEP(,\‘,")
connectionist community. We analyse these former and new— P as the learning-set sizé§;, N; — «, andPj is the
results from a fresh unique point-of-view, using the termi- Bayes error.
nology popular in the statistical mechanics approach. We C are two 20-variate f = 20) GCCM classes;
demonstrate how theoretical results referring to statistical unit variances of all the variables, correlations between
classifiers can be used for conscious control of the SLP all the variables p = 0.213, fu; — wo) =
complexity in its learning process. (—1.7040,0.0326,0.0599,0.0872,...,0.4970,0.528f5) =
In Section 3 of this part, we analyse small sample proper- 0.03, P = 0.01, and the effective dimensionality for
ties of four parametric statistical classifiers based on the EDCp” = p.
class distribution density. In the Section 4 we analyse two D1 are two 100-variate ol = 100) GCCM classes;
nonparametric classifiers, based on the type of decision rule.unit variances; correlations between all the variakles
Section 5 is an experimental one. It shows that the 0.3,p;= — p,=1.042x (1,1,...,.1)P® = P = 0.03, and
theoretical results presented in the previous two sectionsp” =~ 1.05 (definition ofp* in Eq. (5)).

In the above formulatj(i) is the desired output (a target) of
x", thejth learning-set observation vector from, theith
classN; is the number of learning vectors from. Usually
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D2 are two 100-variatep(= 100) GCCM classes; unit  descriptions is called an uhfaithful’ (unrealizable)

variances; correlations between all the variables= model. In our statistical approach, the term “unrealizable”
—0.0101,p; = — p, = 0.0018805% (1,1,...,1).PE = is not exact, since there exist models whBre 142, but the
PH) = 0.03, andp” =~ 10%, asymptotic PMC of the Euclidean distance classifier coin-

cides with the Bayes error.

For tbe GCCM model and, = N, the distribution of DF
95X, X®, X®) can be analysed as the distribution of a
vector product of two independent random vect@sand
Y, ie., f(X, X®, X®) = z'Y is the difference of two
guadratic forms of Gau55|an random variable. We have
denoted hereZ =X — 1(X +XP), Z~N@I(1+ =),
Y=X® - X@ vy~ N([L, 2), p1 — p2 = p. Taking into
account thatZ'Y)?=tr(Z'YZ'Y) = tr(YY'ZZ'), we get

3. Generalization errors of parametric classifiers
3.1. The Euclidean distance classifier (EDC)

In Raudys (1967), the generalization error was first con-
sidered asymptotically, when the dimensionafitand the
learning-set sizedl;, N, are large and increasing simulta-
geously. In_st_a'tlsncal r_nechanlcs_, this Is ca!led tiileefmo- E[g(X, X(l), X(Z))IX Er]l=(—1) 71},‘,% (42)

ynamic limit. An increase in p implies that the 2
conditional distribution of the discriminant function—the —1) =@ 1
random variablegX X®X@X € m)—asymptotically ~ VIGX, X7, X)X € 7] = p'Zp <1+ N>
tends to the Gaussian distribution, and allows us to obtain
very simple, but accurate estimates. The result for EDC is 2 1
unknown, and in fact is unavailable for Western researchers. +tr(Z9) - <1+ 2N> (4b)
Therefore we repeat the main steps of its derivation.

We consider N; + N, learning set vectors AN expression for the expected PMC follows directly from
XP XD, X P XP, - X as random vectors Then we Egs. (3), (4a) and (4b):
have to c0n5|der the dlscrlmlnant functioR(g,X * )X )|X

€ ;) as arandom variable that depe_nds on three independent 1,

p-variate random vector¥, X® andX® (in order to stress EPE) ~ o — 2t

that the variables are considered as random ones, it is com- , 1 ) 1
mon in statistics to denote them by capital letters). Then the p'Ep <1+ N) +trx (1+ 2N>

expected PMC (mean generalization error) can be written as a
sum of two conditional probabilities: In the thermodynamic limit, foé’,= 1= consl& and largg and

5 Ev o) @ N, ignoring the terms of ordep and —, one obtains a
EP{ = q:Prob{g (X, X, X*) < 0IX € 71} very simple expression

E v (2 *

+ g,ProbigE(X, X, X®) = 01X € 75}, @ o~ (P{ - % 1 } -
whereq; denotes priori probabilities of class,, andq, = ’ VT . )
1-q. Y 2p° . (Ww(trT?)

1 . . ) whereé = To=lt P = s
Asymptotically, whenp and N;, N, are increasing, the N 62N (1'Zp)
expect_ed probability of misclassification (the generalization Asymptotically, as\ — s we obtain the asymptotic PMC
error) is of the Euclidean distance classifi®® = &{ — 5°/2}. For
plE) E[g(X, XD, X)X € 4] the spherical Gaussian case we hB8ve |62 Thens” = 6,
_Q1‘I’{ ~ V[g(X, X®, X@)X & 7r1]} whereé? = (u1 — po)'T Y(p1 — py) is the squared Mahala-

nobis distance. In a more general case (Whehl¢?), 6 <
Elg(X, XD, X)X € m,] 8. Then the asymptotic errd?® can be larger than the
+0 {V[g(x XD X)X € x ]} 3) asymptotic PMC obtained for the standard Fisher B
T 2 = ®{ — 6/2}. For example, for 20-variate Gaussian data
where E denotes the expectation, and V the variance, withs” = 3.7616,6 = 4.65,P® = 0.03 andP®) = 0.01. There
respect to three independent random veckaps®, X @, exist situations where the features are correlatedPfRit=
Let N, = N; = N, g, = g, = 0.5, and the classes be P{). Two such examples are presented in Fig. 1 (pairs of the
multivariate Gaussian with different means and a common classesr; and ., 73 andws). Two other examples are the
covariance matrix: Ny, ), N(p2, £)—GCCM model. pattern classeB1 andD2, with 6" = § = 3.76, andP®) =
Note that while designing EDC one assumes the covar- P) = 0.03. Since the paramet&' controls the asymptotic
iance matrixZ = l¢?, and in the analysis of the general- PMC, we call it a modified (effectivé Mahalanobis
ization error, we consider the case where the probabilistic distance
model of the pattern classes different i.e., L # l¢2 In In the spherical Gaussian cage,= p. The EDC can be
statistical mechanics the difference in mathematical trained with comparatively small learning-sets in this case.
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effective dimensionality for this specific choice of para-
meters, we can train the SLP on very small learning-sets.
It follows from Eq. (5) thaEP = 0.0318 folN =5, ands”
= 3.76. We see that for this very favourable case, in spite of
the high formal number of variablep & 100), only five
vectors per class are sufficient to train the EDC perfectly.
Hypothetically, there exist models whare— . We call
such amodel the least favourable distributiond pattern
classes for EDC. An example of densities of such a type is
presented in Fig. 1 (pairs of the classesandw,). Another
example is 100-variate da@2 with p° = 10%. Even an
insignificant deviation in sample mear®’, x® causes a
critical rotation of the decision boundary and a distressing
increase in the generalisation error. From Eq. (5) we calcu-
late EP®) = 0.4997 forN = 200,p” = 10", ands” = 3.76.
Intheory,p” can be close to infinity. Thus, fap = q; = 0.5,
and any number of learning observations the generalization
error of the EDC is close to 0.5. The paramgiecontrols
the sensitivity of the EDC to the learning-set size. There-
fore, we have called & modified(effectivgé dimensionality
(Raudys, 1967).
Consider the model GCCMin which the covariance
matrix X, can be represented & = G'DG, whereG is a
p X p orthonormal matrix of eigenvalues &f, andD is a
p X p diagonal matrix of the eigenvectors, such that

Fig. 1. Effect of a configuration of GCCM model on the effective dimen-
sionalityp*: classes pand p—p* = p, classes pand p—p* > p, classes
ps and p—p* > p.

For example, fop = 20,6 = 4.65 from Eq. (5) we calculate:
EPE ~ 0.0469 forN = 15; EPE ~ 0.0400 forN = 25;
EPNhg) ~ 0.0362 forN = 40, andEP®) ~ 0.033 forN = 80
(graph 1 in Fig. 2). It is important to stress that in special
cases, wher& # |o?, theoretically 1= p* = «. It means
that hypothetically there exist situations where the EDC is
either very insensitive to the learning-set size or, on the D_ ['r 0 ]
contrary, very sensitive to the learning-set size. - el ’
Whenp = 1 we call the modethe most favourable _ - . _
distributionsof Gaussian pattern classes for the EDC. An @ndlisr X ridentity matrix,l,_isa@ — r) X (p—
example of densities of such a type is presented in Fig. 1 r) identity matrix, ande is a small positive constant, such

(pairs of the classes; andws). Another example is the 100-  that @ — ne < 1. Let

p—r

variate dataD1 with p° = 1.05. Because of the small g
p'G =p l ] T=(m',myY),
? (0]
en
I ] where absolute values of components of the (—r)-
04 ! variate vectorm, are very small:my; < ¢, and can be
' ; ignored. This model implies that the distribution of the vec-
as| :' tor X lies in a subspace of dimensionality We say that
' : such data are adn intrinsic dimensionalityequal tor. The
0314 ! effective dimensionality of such data
|t 32 oe - WS (GG (rGE,G'GE,G)
02 Vo (w'Zrp)? (v'G'GE,G'Gp)?
T (m'm)%(trD?)
15 | - (m/Dm)Z =T
0.1 The intrinsic dimensionality of the multivariate data model
05 1 with p°” = 1, discussed above, is equal to 1. We see that an
=t increase in the generalization error of the EDC depends not
0 . D on the formal, but on the intrinsic dimensionality of the data.
p:1] .1 60 N In practice, most often the pattern vectors lie in a nonlinear
Fig. 2. The “scissors effect”. The generalization error verslithe learn- subspace of I(_Jwer dllmen.3|onallty, but the Vanabl“.ty of the
ing set size: (1) Euclidean distance classifier—Hebb algorithm-pfex otherp — r dimensions is not extremely small, i.e., the

20; (2) Fisher classifier—adaline—(graphs from Raudys, 1970); (3) Fisher condition @ — r)e < 1 is not fulfilled. Then we have inter-
classifier with pseudoinversion. mediate cases.
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We need to know only the difference in sample means in intersect and resemble scissors, see Fig. 2, where for
order to find the weight vectow, of EDC. It is, in fact, the small learning-set sizes the graph for the EDC (1) is sig-
same weight vector found by the Hebb training rule (see, nificantly lower than graph for the Fisher DF (2) and
e.g., Barkai et al., 1993). For spherical Gaussian patterns,graph for the “pseudo Fisher” classifier (3). Note that the
Eqg. (5) is in fact identical to that derived by the statistical Hebb training rule is, in fact, the EDC, and the adaline is
mechanics approach (Barkai et al., 1993; Meir, 1995). the Fisher linear DF. Thus, for small learning-sets it is

As a general conclusion, we can say ttheg sensitivity of preferable to use the Hebb rule, and for large ones the
EDC to the learning-set size strongly depends on the.data adaline.

In principle, the sensitivity can be very low, but it can also

be extremely high. In practical problems, however, we sel-

dom have cases similar to the least favourable or to the least3-3. The Fisher classifier with the pseudo-inverse
unfavourable ones just discussed. covariance matrix

The generalization error can be understood on con-
3.2. The standard Fisher linear discriminant function sidering that in the pseudo-inverse approach, the feature
space is rotated by means of a certain orthogonal transfor-
The number of parameters to be estimated from the mationY = TX and afterwards classified by a “diagonal”
learning-set is much larger than for the EDC: we need to classifier in am-variate space of new directions correspond-
estimate p components of the mean vectors for EDC, and ing to r non-zero eigen-values of the sample covariance
we have to estimatp(p + 1)/2 components of the covari- matrix S (r = N; + N, — 2 is the rank of the sample
ance matrix for the Fisher linear DF, in addition. For the covariance matrixS). In this classifier design model, it is
GCCM model, wherN, = N; = N, g, = q, the general-  assumed that a covariance matrix of the vedtet TX is a
ization error of the above classifier (féf = const, and diagonal matrixd, composed of variances of the vector—
large N and largep) can be asymptotically expressed as ther non-zero eigenvaluesd,ds,...d; of the matrixS. This

(Deev, 1970, 1972); Raudys, 1972) is not the optimal way to design a classifier in the very small
learning-set case. The expected error of the “diagonal”
6 1 classifier is expressed by the equation
ERP ~ @] — 2 —=—=", (6) P y e e
VT Ts

1

where 62 is the squared Mahalanobis distance, the term EP(NPH ~ & avzr/p ,
. . . 2

T,=1+ 2_p arises from inexact sample estimation of the \/(1_'_72)1— o2 35

mean vectors of the classes, and the tega=TL + * 4Np

arises from inexact sample estimation of the covaeiance where
matrix. In spite of its simplicity, Eq. (6) yields very exactvalues ¢ = \/\Td/Ed; Eq4 V4 are respectively mean and variance
for the GCCM classes (Pikelis, 1976; Wyman et al., 1990).  of 1/d, andd is a randomly chosen eigenvalue of the matrix
If p— 2N, the estimate of the covariance matrix becomes Shaving Wishart WK, n — 2) distribution. Eq. (7) has some
very inexact, and the termglincreases without limit. Then  similarity with Eg. (5). To findy we have to calculate
the expected PMC tends to 0.5 (whegn= g, = 0.5). When moments of the inversion of eigenvalues of the random
N increases, ang remains constant, the expected error Wishart W(,n — 2) matrix (Raudys and Duin, 1998).
tends to its asymptotic valuB). For example, for the  With an increase in the learning-set sizérom 1 up top,
20-variate Gaussian model GCCM wish= 4.653,PF) = the termg/p andy are increasing, e.g., far= 20 we have:
0.01 from Eq.PEG) we calculateEP(,\,H ~ 0.1094 for sample  y=0.3247 fom= 3,y =1.03 forn= 11, andy = 9.75 for
sizeN = 15;EP{.) ~ 0.0441 forN = 25;EP) =~ 0.0259for ~ n = 21. In the nominator of Eq. (7), the ternfp tends to
N = 40, andEPﬁ,ﬁ) =~ 0.0163 forN = 80 (graph 2 in Fig. 2). decrease the classification error. In the denominator of Eq.
By the example given in Fig. 1, we see that for small (7), the termy tends to increase the generalization error.
learning sets (up tdl = 30) it is preferable to use a simple  Numerical calculations by using Eg. (7) show an interesting
structured Euclidean distance classifier. Furthermore, for and unexpected behaviour of the classification error: with an
large learning sets (ovéM =~ 30) it is preferable to use a increase in the learning set sike the generalization error
complex structured Fisher classifier. It is thescissors decreases at first, reaches the minimum, and afterwards
effect’ known in Statistical pattern recognition already for begins increasing (see graph 3 in Fig. 2). The minimal
25 years: in small learning-set cases, it is often preferable toerror is obtained foN = p/4 (n = p/2) and the maximal
use simple structured classification rules instead of complexerrors are obtained fdd = p/2 (n = p). It is a consequence
ones, and, vice versa, in large learning-set cases, complexof non-optimality of the plug-in pseudo Fisher classifien If
classifiers can be used more efficiently. The learning > p, we obtain the Fisher linear DF, and the expected error
curves EP =f,(N) and EP? =f,(N) of two classifiers  regularly decreases with an increaseNin

Q)
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3.4. Regularized linear discriminant analysis

When calculating the weights of the linear discriminant
function one useS*"* = S+ Ml instead of the conventional
sample estimat8&. Positive terms\ added to each diagonal
element of the covariance matrix help to invert the covar-
iance matrix and act as regularizers. Asymptoticallypas
and N increase, the distribution of the random variable g 3 The “most favourable” distribution of two pattern classes in the
gRPAX, X®, X@, gX € ;) tends to a Gaussian. To obtain multivariate space.
an analytical expression for the expected PMC, we have
used the first two terms of the Taylor series expansion of have seen that there exfstvourable and unfavourable dis-
(S+ N) =514+ 22524 . calculated mixed second- tributionsof the random vectoX. A similar situation arises
and higher-order moments of an inverse covariance matrix in the analysis of small sample properties of nonparametric
S~ After some simple but tedious algebra we obtained (for algorithms.

details see Raudys and Skurikhina, 1994) Let us consider the following model of real multivariate
distributions agthe favourable caseSuppose, the pattern
Oy v/ 1+ AT . : R LN
EPFPA ~ <I>{ - %#} (8) vectors are distributed on a straight line in multivariate fea-
VI ture space. Let the first class vectors be distributed in the
where interval (A,A») on this line, and the second class vectors be
, (W' (5 + )\I)flu)z distributed in the interval (BB,). The classes do not over-

lap, and Euclidean distances|A,| < [A2B4|, BB, <

NT 1 —1_°
wEAN)TEE+ M) 1A,.B4| (see Fig. 3).

the termT, is a certain function oL andp = p1 — 2. Suppose now, that only one observation per class is avail-
As able for training—R and R;. Let us design a linear classi-
N — 00 EPLRDA P(RDA)—cp{ _ 5_x} fier with zero _em_pir_ical error and the maximum_ margin
N T 2 between the discriminant hyperplane and both training vec-

tors. Obviously, the linear decision boundary CvCX +

W, = O will intersect the interval (A,B), and for this model

of the pattern classes the generalization error will be zero.
This provides a verjavourabledistribution of the pattern

An increase in the regularization paramekemncreases
the asymptotic errdPRPA. The termT,, is trying to reduce
the negative influence dfg, the term responsible for esti-

mation of the covariance matrix. Thus, the regularization . :
classes. Possibly, is the most favourable casét has a

can improve the small sample properties of the classifier. ) _ - L
Therefore with an increase i\, the generalization error configuration very similar to the distribution of the classes
' w3 and w5 in Fig. 1, the most favourable Gaussian

decreases at first, and afterwards begins increasing. Thed. tribution for the Eudlid dist lassif
optimal value of\ decreases with an increase in the learn- istribution for the tuclidean distance classilier.

ing-set size (Raudys and Skurikhina, 1994). For the GCCM In order to thaln low ggnerahzaﬂon errors one .needs
model, after optimization with respect #g the resulting many more training examplés unfavourable casesf dis-

generalization error is smaller than both the generalization tFr!butllons of thet tp;]atter? classebsi. The C:cassiﬁﬁg%g 'g h
error of the Euclidean distance classifier and that of Fisher ' '9: * FéPresent thé untavourable case for the EDL. such a
and pseudo Fisher. configuration of the class conditional densities is also

unfavourable for the minimum empirical error classifier
design. The upper bounds for the true and estimated classi-
3.5. Generalized discriminant analysis fication errors of the minimum empirical error classifier
indicate that, in theory, very “bad” distributions of pattern
No theoretical results have been obtained yet on the classes can occur. Therefore in practice it is important to
generalization error of the generalized robust Fisher linear obtain results for intermediate cases.
classifier. Papers and a monograph of Kharin (1992) analyse In Raudys (1993) an analytical expression for the mean
robust statistical classifiers where the learning-set of eachgeneralization error of the zero empirical error (ZEE) linear
class is contaminated by vectors of the opposite patternclassifier (a particular case of the minimum empirical error
class. classifier) was obtained for an intermediate case—"a more
realistic situation”—a model of two spherical Gaussian
distributions. A hypothetical “random search” (Monte-

4. Generalization of nonparametric classifiers Carlo) training procedure was analysed theoretically.
Here, one repeatedly generates many random discriminant
4.1. The minimum empirical error classifier hyperplanesv, + w'x = 0 according to a particular prior

distribution of the weightsv,, w, defined by the particular
In the analysis of the Euclidean distance classifier, we priori density of the weightsj,.(w,,w). One selects only
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those hyperplanes that classify all learning-set vectors with- relative increase in the mean expected classification error,
out error, and the margin (the Euclidean distance betweenthe learning quantity, the ratio= EPy /P.., the zero empiri-
the discriminant hyperplane and the learning vector closestcal error classifier with: a) random; and b) EDC priors (the
to it) exceedsA. In the statistical mechanics approach, a data from Raudys and Diciunas, 1996). For comparison in
randomized training procedure of such type is called “the the same Table, we presentvalues for two parametric
Gibbs algorithm”. It is one possible training method classifiers (the Euclidean distance and the Fisher one; data
from a variety of optimization techniques that can be from Raudys and Pikelis, 1980).
used to find the weight vector. It is not the best choice in  Clearly, the learning quantity depends on the type of
practice; however, it is very convenient for analytical inves- classifier, the ratioN/p, and é, the distance between the
tigations. pattern classes. The Euclidean distance classifier enables
When A = 0, we have the zero empirical error (ZEE) us to design a classification rule in cases where the number
classifier. WhemA > 0, we have the margin classifier. In  of learning vectors = 2N is smaller than the number of
Raudys (1993p mean expected probability of misclassifi- features. However, this classifier makes assumptions that
cation ERy of the pattern vectors that did not participate in the components of the feature vecdrare mutually inde-
the training was considered. The expectation was taken bothpendent. As a result, this classifier will not work well in
with respect to Bl random training vectors and to the ran- certain applications. The Fisher DF allows us to evaluate

dom character of generating + 1 weights. When the the dependencies between the features but requires many
priori distributionqpie(Wo,w) of the (o + 1)-variate weight more learning-set vectors. The zero empirical error classifier
vector w,, W is spherical Gaussian, only vagepriori allows us to take into account statistical dependencies

information on the weights is used to design the classifica- between the features and, at the same time, can be used in
tion rule. Thus, the classification rule is designed only on the cases where the number of dimensions is higher than the
information contained in the learning-set data. number of learning examples.

Suppose, now, thadditional informationon the weights Comparison of the last six columns of Table 1 with the
W,, W is available Let this vector be generated not at ran- previous five columns indicates théite favourable (tight)
dom, but found froman additional data-seby using the prior distribution of the weights can reduce the generaliza-
Euclidean distance classifier. In Part | of this paper, it was tion error dramatically. Recall that this conclusion was
shown that such a weight vector can be obtained in batch-obtained for the spherical Gaussian model of the pattern
mode training the nonlinear SLP after the first iteration. classes.

Then theprior distribution ¢pio(Wo,w) will be narrower In order to analyse the character of the learning curves we
than the distribution obtained in the case of the random used the data in Table 1 to plot the generalization error
weight generation. versus(p/N)* for different values of paramet& For large

The above model allows us to calculate the mean sample sizes (whemM\2> p) we found that an increase in the
expected classification error using the techniquawher- generalization erroEPy — P.. of the Fisher classifier (ada-
ical integration The analysis of numerical results obtained line rule) is proportional t@/N. This agrees with the asymp-
for the spherical Gaussian model indicates that an increasetotical universal learning curves derived by Amari and
in the expected classification error of the linear classifiers is Murata (1993). For very smalt/N, however (whem =

in fact a function of the rati@/N and distance, only. It N/2 approacheg), an increase in the generalization error
depends on the prior distributiogy.(we,w) and the dis- of the Fisher classifier is proportional @/Kl)?, and only for
tance between the pattern clasgedn Table 1, for 50- very largeN we have the linear relationship.

variate spherical Gaussian centred classes we present a We found that the increase in the mean expected

Table 1
Learning quantity, ratia = MEP\/MEP/P.. of the Euclidean distance E, Fisher F and the zero empirical error (with random and “Euclidean” prior weights)
classifiersversus N/plearning set size/dimensionality ratio

E F ZEE with Gaussian priors ZEE with Euclidean priors N/p

182 234 309 366 422 216 3.76 100 251 712 163 199 270 347 442 0.16
170 203 241 265 287 2.04 343 858 207 569 148 169 212 257 3.08 0.24
154 170 184 192 1.99 188 293 6.77 153 417 129 140 166 191 2.16 0.40

143 150 155 158 161 205 3.39 840 19.7 520 174 257 558 123 31.7 117 125 1.43 1.60 1.77 0.60
130 132 133 134 1.35 162 215 361 595 106 156 216 434 9.13 225 1.08 1.13 1.26 1.37 148 1.0
118 117 116 116 1.17 133 151 193 247 327 135 173 3.09 6.04 141 103 1.06 113 1.21 1.27 20
1.08 107 1.06 1.06 1.06 114 119 131 144 161 116 132 206 359 7.68 1.01 1.02 1.07 1.10 114 5.0
1.04 103 1.03 1.03 1.03 1.07 109 115 120 127 1.08 119 159 253 498 101 1.01 1.03 1.06 1.09 10.0
1.02 102 1.02 1.02 1.02 1.04 105 107 110 1.13 104 110 134 186 335 1.01 1.01 1.02 1.04 1.06 20.0
1.01 101 101 101 101 1.01 102 103 1.04 105 1.02 104 115 139 211 101 1.01 1.02 1.03 1.04 50.0
168 256 3.76 4.65 5.50 168 256 376 465 550 168 256 376 4.65 550 1.68 256 3.76 4.65 65.50

02 01 003 0.01 0.003 02 01 003 001 0.003 02 01 003 001 000302 01 0.03 o0.01 P0.003
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generalization error of the minimum empirical error classi-
fier is proportional tojt/N)>. The order paramet&depends
onp/N andé. We haveS~ 0.1 foré = 2.56, andS= 0.4 for

6 = 4.56, wherp/N is large. Paramete® increases with\:

we haveS = 0.7 foré = 4.56, and smalp/N. According to
the asymptotical universal learning curve theory, for very
large N the paramete$ approaches 1. Note, the results for
the ZEE classifier with Gaussian priors in Table 1 are
obtainable from the approximate formula:

0 1

MEP{ED =~ ¢{ — 5
\/1—1—(1.64—0.186)(%

) 1.8—-46/5

9)
that can be compared with analogical formulae derived for
the parametric classifiers.

4.2. Intrinsic dimensionality

Consider the GCCMmodel N,E;), N(u,,Z,) with r
nonzero eigenvalues o, which has already been
considered in the previous section. This model implies
that the distribution of the vectof lies in the subspace of
dimensionalityr. The effective dimensionality of such data
p" = r, and for this model withihe intrinsic dimensionality
equal tor < p, the small learning-set properties of the zero
empirical error classifier can be analysed in theariate
space. In this space, thevariate vectolY = gXis spherical
Gaussian, and all the above conclusions derived foipthe
variate spherical Gaussian model are valid. For the GECM
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Fig. 4. The mean generalization error of the maximum margin classifier
versusA, the bound for the margin: (N = p/4; (2)N = p/2; (3)N = p.
Spherical Gaussian classes= 3.76;p = 20&200 (dots).

peaking behaviour, i.e., it begins to increase when the mar-
gin becomes too large.

Clearly, in the spherical Gaussian case, the generalization
error of the Euclidean distance classifier is much lower than
that of the Fisher DF and ZEE classifier. This can be
explained by the fact that while designing EDC, one
estimates only sample mean vectors and ignores covar-
iances. In order to design the Fisher DF one also needs to
estimate the X p covariance matrix. For a small number of

model, the small sample properties of the ZEE classifier are features (wherp < 2N) the generalization error of the

determined by the ratior/N, and not by the formal
dimensionality/sample size ratip/N (for details see
Raudys, 1993).

4.3. Maximal margin classifier

The numerical calculations performed according analyti-

Fisher classifier is lower than that of the zero empirical
error classifier. However, for a large number of features
(when p is close to N or exceeds R), the minimum
empirical error classifier nearly to outperforms the Fisher
classifier.

As ageneral conclusiorwe can state that the nonpara-
metric approach for designing the linear classifier generates

cal equations derived for the SGC model indicate that an reliable rules even in cases where the number of features is

increase inA, the value of a bound for the margin,

diminishes the mean expected classification error. We pre-

sent six graphs: the mean expected eM&P, versusA in

significantly larger than the number of training vectors. We
do not need to estimate the class global param&arsip,,
po, the covariance matrix, and the means, when we reject the

Fig. 4. The graphs are calculated for a random Gaussianassumption that the classes are Gaussian The estimation of
prior distribution of the weights, differerp/N, and two these parameters in a high-dimensional case is not favoured
values ofp. The theoretical results indicate that an increase in classifier design. Additional information supplied as a
in the margin width can diminish the mean generalization prior distributiongp.(wWo,w) can reduce the generalization
error (two to three times in the given example). error dramatically.

The mean expected classification error is derived as a
mean value averaged over those parts of learning-sets for
which it is possible to obtain margins larger thanThere- 5. Learning-set size and generalization error of single-
fore this estimate is valid only for certain learning-sets. In layer perceptrons. Simulation study
the next section, we report experiments with the nonlinear
SLP, that show that in spite of the fact that, on average, the In Part I, we have demonstrated that there is no unique
mean generalization error decreases wthfor particular nonlinear SLP classifier. The SLP appears equivalent to a
Gaussian learning-sets the generalization error has asequence of statistical classifiers. Which particular type of
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classifier will be obtained depends on: the data, the costdecreases: there we have the regularized DA. The different
function to be minimized, the optimization technique and target values, however, lead to different classification rules
its parameters, the stopping criteria. An objective of this later: with targets “0.1&0.9” we are approaching the
section is to show that the theoretical results presented instandard Fisher DF withP., = 0.093; and with targets
Part I, and in the previous two sections, are valid for the “0&1” we are approaching the maximal margin classifier
nonlinear SLP classifier. In our simulations, we have used with a significantly smaller generalization error.

the GCCM and SGC data, the batch-mode BP training algo- More information concerning the generalization error can
rithm, the cost function of the sum of squares with the be obtained from average values of the generalization error.
sigmoid activation function. At different moments of the We used the 20-variate GCCM dafaagain, and compared
training process, we calculated the generalization error experimental learning curves of the SLP with those of the
analytically

a p
1 'ul 1 ' gen
Py= =& WotWp (14 w ) (10)
2 | Vwrlw 2 | JyWE_w
12

In most experiments, except when stated otherwise, the
conditions E were fulfilled. Most often we used the

target values; = 0 andt, = 1. Close targets, e.gt; = 01
0.45 andt, = 0.55, make the sigmoid activation function

act as a linear function. Thus after minimizing the cost 08
function we obtain the standard Fisher DF. Therefore in
experiments with the non-limiting targets, we uségd=

0.1 andt, = 0.9, the target values recommended by 06
Rumelhart et al. (1986).

04|
5.1. The SLP and parametric classifiers

Target values essentially influence the learning process 02}

when the empirical classification error is small. In Fig. 5 we

plot the dependence of the generalization error on the num- 0 s .
ber of iterationst for the 20-variate GCCM dat&. Both A 4 ol N
graphs were obtained for one learning set with= 14 b E}L j T j
vectors from each class; however different target values
were used. To make the learning process faster we used a 03 i
slightly increasing learning-step:= 10.1.0008. After the
first iteration we got EDC witP g, = 0.058 in both cases.
At the beginning of training, the generalization error 025t ]
32
B
& Fisher linear DF 02r )
08
015} .
07
01} 1
06
|
05 005 \ 1 E
vedo \.:T?:m
04 0 ‘ ‘ '
~ 0 20 40 60 N
03 Fig. 6. “Scissors effect” in practice: the average generalization eemsus
’ N. (a) The nonlinear SLP: (1) after the first iteration; (2a) after 500 itera-

tions (targets “0.1&0.9”); (2b) after 100 iterations (targets “0&1"); (4)
Fig. 5. Effect of targets on the BP training process: the generalization after the optimal number of iterations. (b) The statistical classifiers: (1)
error versus { the number of iterations. (1) targets= 0.1,t, = 0.9; (2) EDC; (2) Fisher DF; (3) pseudo Fisher DF; (4) regularized DA for optimal
t; =0, t, = 1. 20—variate GCCM dat€; N = 14. |. 20-variate GCCM dat&.
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EDC, the Fisher linear classifier and the regularized DA modelD2 with p* = 10® is a perfect example. Theoretical
with the optimal value of | (Fig. 6a and b). Each curve is calculation gives the generalization error of E[EG(NE) =
an average value obtained from the same 50 randomly0.4997. In a series of 10 experiments with learning-sets of
selected learning-sets. sizeN = 200, we have obtained a very high generalization
In spite of the fact that the targets “0.1&0.9” are far from error—the EDC yielded, on average, 0.4997 of the error.
being close, and force the sigmoid activation function to act After the first iteration, the SLP gave the same result. The
as a linear function, we see that the learning curve of the Fisher DF, however, yielded a “reasonable” error 0.058,
nonlinear SLP exhibits a clegreaking behaviouin the i.e., 1.93 times higher than the asymptotic el = 0.03.
interval (1< n < p). The shape of the SLP learning curve This corresponds to Eq. (6), and Table 1 o 3.76 and
with targets “0.1&0.9” (2a in Fig. 6a) resembles the experi- N = 2p. Note this type of almost singular data is a very hard
mental and theoretical curves for the standard Fisher DF andproblem for BP training. In such a situation, a “decorrelat-
the Fisher DF with pseudo-inverse (2 and 3 in Fig. 6b— ing” transformation
simulation, and 2 and 3 in Fig. 2—theory). Both combina- Y = TX (11)
tions of the target values yield EDC after the first itera- =
tion—the learning curves numbered by 1 in Fig. 6a and b is very helpful. In Eq. (11)T = D V4G, and G is an
are identical, and both experimental curves coincide with orthonormalp X p matrix such thalGSG = D (diagonal
the theoretical one (1 in Fig. 2). matrix of the eigenvalues). Then, in a new sp&¢e again
Forn > 1p, the experimental learning curve 2 in Fig. 6b we obtain the EDC after the first iteration; however, this
becomes very close to the theoretical curve 2 for the Fisherclassification rule is equivalent to Fisher's rule in the
DF in Fig. 2. The same can be said about the experimentaloriginal 2y space.
learning curve 4 in Fig. 6a of the SLP after the optimal
number of iterationg, (targets “0 and 1), and curve 4  5.2. The SLP and nonparametric classifiers
in Fig. 6b for the regularized DA with the optimal value of
the regularization paramet®gy. To find the optimal values The weights of the nonlinear SLP are increasing when we
topn and o, We used Eq. (9) to calculate the generalization use limiting target values and have small empirical error.
error. The learning curve 2b in Fig. 6a corresponds to targetsThe SLP then becomes similar to the minimum empirical
“0&1". For this type of the data, the targets “0&1” allow  error and maximum margin classifiers. We demonstrate that
us to obtain an essentially smaller generalization error, andthe theoretical results of the previous sections are consistent
to confirm our theoretical considerations as to the impor- with simulation studies.
tance of choosing proper target values. In experiments, we use exactly the same type of data as in
Fig. 6b demonstrates a clear “scissors effect”: for small the previous analytical study—the multivariate spherical
learning-sets up tdl = 30 it is preferable to use the simple Gaussian data. In order to have possibility of increasing
structured EDC than the complex Fisher linear DF, amck the margin and analysing the influence of the margin
versg in large learning-set cases, the Fisher linear DF can width on the generalization error, we have chosen a rela-
be used more efficiently. The same conclusion is valid for tively large Mahalanobis distanée= 3.76 (the asymptotic
the SLP: for small learning-sets it is preferable to train the and Bayes erroPg = 0.03), a small learning-set sizB &
SLP for a short time, andjice versain large learning-set  100) and have used an exponentially increasing learning-
cases, one needs to use more iterations. Other regularizingtepny = 5o X 1.1".
factors, such as target and learning-step values, operate In the previous section we have seen that in the random
simultaneously, and the problem to find optimal values of search optimization (the Gibbs algorithm), the generaliza-
all these parameters is not easy. tion error essentially depends on the prior distribution of the
Theoretical considerations on the effective dimensional- weight vector. Thus, one of the objectives of this subsection
ity p~ of the EDC indicate situations where the SLP can be is to verify whether the starting position M W g) of the
trained perfectly on very small learning-sets. In Section 2 weight vector can also be important for the accuracy of the
we have analysed an extreme case: the 100-variate GCCMinal position of the weight vector in the gradient search
data modeD1 with the effective dimensionalitp” close to procedure. In all our experiments so far, we fulfilled the
1: p* = 1.05. Theoretical calculation gives the generaliza- learning conditionsE, i.e., just after the first iteration we
tion error of EDCEP(NE) = 0.0318. In a series of 10 experi- used to obtain EDC. There are many theoretical arguments
ments with learning-sets containifige 100-variate vectors  that EDC is the best sample-based classification rule for
from each class, we have obtained a very small generaliza-spherical Gaussian patterns. In order to overcome this com-
tion error: the EDC vyielded, on average, 0.039 error with plication, nearly in all of the experiments, we initialized the
standard deviation 0.009. The same result was obtained forweights randomly: starting weights }y, W ) were chosen
the SLP after the first iteration. from the Gaussian distribution: (W§,W ')’ ~N(0,02).
The same theoretical considerations on the effective Low and moderate values of lead to EDC, while very
dimensionalityp” indicate situations where is difficult to  high ones lead to an immediate saturation of the activation
train the SLP classifier. The 100-variate GCCM data function and can stop the training just after the first iteration.
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In order to choose® we calculated the variance V of a Comparisons of empirical and theoretical results are sum-
double random variable W, + Wq'X, where marized in Fig. 8. For spherical Gaussian data, with a

(Wo0),W(g))' ~N(O,l 0%, and X~N(u;,l). For sym- decrease in the value of, the generalization error
metrically situated classes (= — p1 = p/2), variance decreases, and approaches values obtained for EDC (graph
VIW o) + W)X} = o’(p + 1 + 69). This variance influ- 9—theory and simulation). High values @f often cause an
ences the saturation of the activation functiafWw o) + immediate saturation of the activation function and a small

W 'X) and, consequently, affects the training process. gradient of the cost function. Then the perceptron does not
Hence, when analysing the influence of weight initialization learn or learns extremely slowly. In Fig. 8, for dimensionality
on the generalization error, we defined the initialization p = 200 and a bound for the margih = 0, by “x” we

variances” as a function of dimensionality: denoted average generalization errors for three different initi-
) ) 1 alization intervals defined hy,: o, = 5 (utmost upper point),
0°=(04) S 12) 0, = 2 (a point on graph 4) and, = 0 (a point on graph 8).
P All experimental graphs are average values obtained in 50
Thus, the coefficient,, controls width of the weight initi-  independent learning experiments. We have chosen the initi-
alization interval. alization witho,, = 2 as sufficiently wide, yielding a general-

Two graphs in Fig. 7 are typical of this type of experiment jzation error close to the theoretical values calculated for
with spherical Gaussian data. When starting fraero randomprior distribution of the weights.
initial weights, we obtain the best sample-based classifier Graphs 1, 2 and 3 for the zero empirical error classifier
(EDC) just after the first iteration. Therefore, we have a aretheoreticalones. They are calculated for a random Gaus-
constant increase in the generalization error later (graphsian prior distribution of weights, and the bound for the
2). After starting from a distantpexactinitial weight vec- marginA = 0, 0.4 and 0.8, respectively. Graphs 4, 5 and
tor, the training process *“corrects” the weight vector, and 6 are experimentalones (initialization interval, = 2).
therefore reduces the generalization error at first; however, These graphs are average values found only from those
later on, it leads to the maximal margin classifier. This |earning sets whose the margin values are higher than
classifier is far from being the best one for spherical Gaus- 0, 0.4 and 0.8. Note that fér= 3.76,N = 100, andp > 100
sian patterns. Therefore, after reaching the minimum, we we succeeded in obtaining zero empirical error and large
obtain an increase and approach the learning curve for themargins—M = A = 0.8—in almost all the experiments.
zero weight initialization: graph 1 (dots, #5to0 150" Both the theoretical and the simulation experiments indi-
iterations only). The minimum of graph 1 with the random cate that with an increase in margin width averagethe
initialization is notably higher than the minimum of generalization error decreasesalhtheindividual training
generalization with zero weight initialization. This experi- experiments performed with different learning-sets, how-
ment indicates that random initialization and a search for the ever, we noticed theovertraining effect-an excessive
maximalmargin is not always the best strategy in classifier growth of margin width increases the generalization error.
design. This is no surprise, since the maximum margin classifier is
not the optimal classification rule for spherical Gaussian
. . . classes. The Euclidean distance classifier (SLP after the
Best first iteration) is the optimal sample-based classification
o011t - 7 rule for this model of the pattern classes. Another explana-
tion of inconsistency of the theoretical and simulation

0.1} . 1 results is embodied in the fact that we calculated the expec-
0.09 _1 J tation of the generalization error over random Gaussian
) prior distributiong|yio(Wo,w) in the previous section’s “ran-
008} ° 1 dom search” optimization procedure (the Gibbs algorithm).
: During gradient training, however, the weight vecteg,(v)
007 i is not random: it moves according a certain trajectory,
0.06 i where a distribution of valueswg,w) differs from the
Gaussian model. This means that the theoretical estimates
005t . for the margin classifiers trained by the Gibbs algorithm
should be considered with a certain prudence.
0.04 ) Graph 7 in Fig. 8 is obtained for the case of random
003 ) ) ; weight initialization ¢, = 2) too, however, it represents
100 200 300 t the mean generalization error calculated usiptimal mar-

Fig. 7. Effect of weights initialization on SLP training: the generalization glnfye(ljlues le’]t eval.uat(led forbeact; .partlgular leammg_lset'
error versus t the number of iterations. Spherical Gaussian classes, Tofin Mopt' the OPt_'ma numoer o 'terat.'onlgpt was eval-
3.76,p = 100,N = 200. Varying learing-step & 1.1', random N(05?) uated from the minimum of the generalization error calcu-
weight initialization: (1)o? = 0.1; (2) 6 = 0.0. lated analytically after each iteration. There we have used an



S. Raudys/Neural Networks 11 (1998) 297-313 309

T T ¥ T ] T T

gen.

025

0.2

0.15

0.1

005

1 1 1 1

150 200 250 300 350 400 a0 P

Fig. 8. Generalization error of the zero empirical error and (maximum) margin classiéiesssdimensionality. Theoretical (1,2,3,9,10) and simulation
(4,5,6,7,8) results (average values from 50 independent experiments). Graphs 1 and 4vhza@igraphs 2 and 5, margM = 0.4; graphs 3 and 6, margin
M = 0.8; 7, the optimal margiM obtained for the optimal number of iteratioRgima; 8, 0, = 0.0 andVl = 0 (simulation); 9, EDC (theory and simulation); 10,
the ZEE classifier, “initialization by EDC”, and the additional learning set (theory).

additional information. Therefore graph 7 is much lower orthe SLP with non-limit, close target values). In this sense,

than any other graph depicted for the fixed valuerpi= the nonparametric minimum empirical error classifier is
2. It demonstrates a definite overtraining. We will return to more favourable: in principle, error bounds exist that give
this effect in the following section. lower estimates than that for EDC for extremely lagje

Graphs 8, 9 and 10 in Fig. 8 are presented in order to However, extreme, unfavourable cases in both approaches
illustrate a positive influence of more exact (non-random) are not frequently met in real world problems.
weight initializationon SLP training. Graph 8 corresponds
to SLP, trained from zero initial weights, and the marlyin
= 0. In this situation, after the first training iteration we 6. Dynamics of the generalization error. Overtraining
obtain EDC—the optimal sample-based classification rule
for spherical Gaussian classes. Hence, roughly speaking, The above theoretical results throw new light upon the
SLP is initialized by the weights of the optimal classifier. overtraining problem. The overtraining effect is caused by
Graph 9 corresponds to the generalization error of EDC. two factors. First of all, it is a difference between the cost
Graph 10 (the ZEE classifier) is calculated from the theore- function surfaces, obtained from the learning-set data, and
tical equations of the previous section for the case where thethat obtained from the test-set data (a general population).
prior distribution of weights was determined by EDC calcu- On the way from the starting vector, to the minimum of
lated from an additional learning-set. A comparison of the cost functioni, we can passv’, the minimum of the
graph 8 with 4 indicates that acorrect initialization” cost function surface of the general population. On the
reduces the generalization error dramaticallfhis means  whole, the larger the difference, the larger the overtraining
that the perceptron weights can store a large amount of effect can be expected to be. This factor, however, explains
useful information only a proportion of the cases where the overtraining effect
The graphs in Fig. 8 indicate that the theoretical estimatesis observed: dependent on the configuration of the triangle
are rather close to the experimental ones for spherical Gaus(w(o),v“v,w*) we can either observe or not observe the
sian classes. It is desirable to discuss the case of more genevertraining.
eral distributions. The analysis of EDC has shown: Inmany simulation studies, we observe overtraining in all
dependent op’, the effective dimensionality, this classifier training experiments. This can be explained by another fac-
can be trained even with very small learning-sets. In other tor: a change in the type of statistical classifier that occurs
extreme casesny number of learning vectors is insufficient  with an increase in the number of iterations. One of these
to train the EDC Similar considerations are valid for other classifiers appears to be the best one in the finite learning-set
parametric classifiers (e.g., the Fisher linear DF—adaline, size situation. Overtraining can appear when the weights are
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small and the activation function acts as a linear one. Thenbounds, as well as universal learning curves obtained
we move from the EDC towards the regularized DA and the asymptotically when only — oo,

Fisher DF—see, for example, curve 1 in Fig. 5. A majority of the results obtained for the classification
If the covariance matrices of the pattern classes are problem (categorical “0—-1" loss) agree with the results for
different and/or the data is not Gaussian, then the Fishera continuous loss obtained by the statistical mechanics
linear classifier is no longer an asymptotically optimal clas- approach. Sjoberg and Ljung (1992) have indicated that
sification rule. In order to obtain the best linear classifier, regularized linear regression can be obtained as a con-
one needs to evaluate higher order statistical moments tharsequence of an increase in the number of iterations while
the mean vectors and the common covariance matrix. Thetraining the linear SLP. For the linear prediction model
generalized DA and the minimum empirical error classifiers y=w’x + £, Hansen (1993) showed that the generalization
can be the best choice in that case. Therefore the overtrain-error

ing can occur later, when the weights are large and the
activation function acts as a nonlinear one. Then we move &g = o; (1+no +—
from the Fisher classifier towards the generalized Fisher, n=p Nn=p
and further, towards the minimum empirical error classifier. wherey is the learning-step parameter in the BP tramrrfg

To do this, sometimes it is necessary to add a supplementaryis the variance of noisé, o4 is the variance of an input
anti-regularization term. In Part | we have demonstrated vector x in the modelx~N(0,l62). The termH agrees
such an example. with the term Ty in Eq. (6) and much earlier result of

For special types of data sets, the best classification rule isDavisson (1965). The termo? pr arises due afinite
the maximal margin classifier. An example of such type of value of the learning-step. A trade-off between the effi-
data was presented in Fig. 2 in part | (dBdalIn this case we ciency of learning and the minimization of the classification
cannot get any overtraining at all. This model with “the error was firstly analysed in Amari (1967), where the fol-
sharp edges”, however, is not characteristic of the real lowing fundamental result was obtained: the weight vector
world problems. Most often we have “fuzzy” boundaries W, of the linear perceptron trained by the gradient descent
of the pattern classes, and obtain the minimum earlier beforetraining asymptotically is a Gaussian random variable. Its
the maximal margin classifier is reached in SLP training mean value isv, the minimum of the cost function of the
(see Fig. 7). sum of squares, and the covariance matrixvpfs propor-

tional ton. A similar result to Eq. (13) was also obtained by

Bos (1996) who analysed the accuracy of on-line and off-
7. A few additional bibliographical remarks line training. For the linear model it was shown that the

optimal selection ofy can help to obtain practically the

Different fields (conventional multivariate statistics, same accuracy in both the types of learning. Analogously
neural nets, computational learning theory, Al, machine to the generalization error of the pseudo Fisher linear DF,
learning) address the supervised learning problem. All the presence of the minimum in the learning curve “gener-
these fields have their own jargon, their own mathematical alization versusthe learning-set size” was noticed in the
models, their own concerns, and their own results. And for linear prediction by Krogh and Hertz (1992), and sBo
the most part they don't interact (see the preface in the book (1996).
edited by Wolpert, 1995a). Hence, it is very difficult to An important conclusion of this paper is that the charac-
compare the results obtained by different approaches. Anters of the learning curves depend on the data. For the sta-
attempt to do this was made by Wolpert in his paper tistical models this was first noticed in Raudys (1967). For
(Wolpert, 1995b), and in a dozen papers in the book men- some models the character is determined by the intrinsic
tioned. In addition to the remarks in Section 1, we try to dimensionality of the data, however, the definition “intrin-
compare the results discussed in this paper with thosesic dimensionality” is not unique. For example, for the
obtained by other approaches. GCCM' model N{q,E,), N(u»,E,) the effective dimension-

In multivariate analysis, there are two types of asymptotic ality for the EDCp” = r. However, the expected error of the
investigation of the accuracy of prediction and classification standard Fisher linear DF is determined by Eq. (6), and the
procedures. In one of them, the dimensionafitys kept “intrinsic dimensionality” r here plays no role. The con-
constant, and the sample sireis increased. In another clusion that the data type strongly affects the character of
one,n and p increase simultaneously. The analysis shows the learning curve is confirmed by modern approaches, too
that the second approach is much more accurate. In parti-(Kowalczyk, 1996). Possibly, it agrees with the universal
cular, the difference can be noticed for small values of the convergence theorem of Amari and Murata (1988), =
classification error and the ratio/p (Pikelis, 1976; Wyman  Hoe 4+ L'/(2n), where for the unfaithful (unrealizable) net-
et al., 1990; Takeshita and Toriwaki, 1995). Our analysis work: L" = trk ~'G, whereK is the Hessian matrix, ar@ is
and that using statistical mechanics (Haussler et al., 1994)the Fisher information matrix. In this approach, unfortu-
showed a qualitative difference between the learning curvesnately, no explicit and/or numerical estimates have yet
of the ZEE classifier (see, e.g., Section 4.1) and the VC error been obtained for the GCCM model.

2 2P  p— 1> (13)
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In principle, the multivariate statistical analysis allows us and found that small learning-set properties of SLP change
to obtain the generalization error for a wide variety of multi- in time. Our simulations confirmed the theoretical
variate statistical models. For particular models, one obtains conclusions.
absolutely exact results. However, there are two fundamen- The main corollary of this paper is that, in order to obtain
tal difficulties. First of all, true distribution densities of the the best generalization in the training process, one needs to
pattern classes are usually unknown. As we have seen, incontrol the complexity of the SLP classifier. Recall that the
certain GCCM configurations the EDC can be extremely best type of the classifier depends on the learning-data: its
sensitive or extremely insensitive to the learning-set size. size and configuration. For simple-structured data (e.g.,
A similar situation arises with the standard Fisher linear DF, spherical Gaussian) and small learning-sets one needs to
where one can invent very unfaithful data models, where the use simple classifiers (e.g., EDC). For complex (e.g., non-
Fisher DF is extremely sensitive to the learning-set size. Gaussian data with statistically dependent variables, differ-
One can argue that theoretical estimates for these classifiergnt covariance matrices, multi-modal classes, etc.) and large
are useless. Nevertheless, simulations with real world data-data-sets, one can and sometimes must use complex
sets (see, e.g., Raudys and Pikelis, 1980) show the theoreticlassifiers such as the minimum empirical error one.
cal estimates derived for the Gaussian data to be fairly close In Part |, we enumerated a humberragéans which can
to the experimental results. The dependence of statisticalhelp to control the complexitpf the SLP classifier. The
inference on unknown parameters of the models is a generalmeans are associated either with the type of cost function
drawback of all statistical techniques, and will not be orwith the optimization procedure. In addition to the known
discussed here. complexity control techniques, a few new ones were pro-

The second drawback of statistical analysis is that the posed. We stressed the importance of the target values, a
analytical formulae are often very complex. Sitgreaves gradual increase of the learning-step, and the antiregulariza-
(1961) derived the exact formula for the expected classifica- tion term, if we wish to obtain the minimum empirical error
tion error of the standard Fisher linear discriminant function or the maximum margin classifiers. Another complexity
in the form of a five times infinite sum of products of certain control technique is to move the centre of the learning-
hypergeometric functions. We had similar problems with data into the origin of coordinates. More suggestions for
the EDC, the quadratic DF, and the ZEE classifier. For the transforming the data@an be giverio make the data simple
ZEE classifier, after obtaining the exact formula we (spherical) in which case the best classifier is the EDC. The
obtained a simple asymptotic expansion (Raudys, 1993),use of data transformations with a view to simplifying the
but its accuracy was low. A more exact expansion (Basaly- data structure is, in fact, antroduction of new additional
kas et al., 1996) was accurate enough but required solutioninformation into the training processf the information is
of a certain differential equation. A similar numerical correct, it can help reduce the generalization error.
difficulty was met by Meir (1995) who used the statistical We became convinced thaticcessful initializationf the
physics approach, and derived the generalization errorperceptron leads to the best results at the very beginning of
equations for three versions of SLP. the training process, and helps to reduce the training time

We have reviewed only a proportion of the known results. and the generalization error. Therefore, in practice, it is
In MLP classifier design, the weights of the hidden layer important to utilize this favourable peculiarity of the per-
affect all outputs. Thus they are common for all outputs of ceptron. This can be done by introducing any prior informa-
the network. In statistics, it has been demonstrated that intion into the weight initialization process. There are a
the thermodynamic limit, under certain conditions, para- number of practical means to use the additional information
meters of probabilistic models that are common for all for the weight initialization and the data transformations.
classes asymptotically do not affect the increase in the gen-These means will be discussed in subsequent publications.
eralization error (Raudys, 1972; Deev, 1974; Meshalkinand Among other questions not discussed here are the MLP
Serdobolskij, 1978). This result is very important for MLP and on-line training. No doubt, in on-line training, where the
analysis, where the weights of the hidden layer affect all the learning vectors are presented in a sequence, we obtain the
outputs. simplest classifiers at first, and the most complex ones last.

Possibly, a proportion of the results discussed here can be

useful during on-line learning analysis. In the output layer,
8. Concluding remarks the MLP classifier includes a nonlinear SLP. We believe

that the peculiarities of the nonlinear single-layer perceptron

The analysis of the SLP as a dynamical process allowedwill introduce themselves there. In training, after the non-
us to follow the neurone’s evolution: with an increase in the linear target transformation in the output layer, the hidden
number of iterations the weights gradually increase, the layer neurones are fed by non limiting values of the targets.
actual slope of the activation function changes, and In addition, the target values are different for each learning
gradually, step-by-step, seven known statistical classifiersvector. Our analysis has shown that the target values play an
can be obtained. We stopped training at different moments especially important role in perceptron training. Moreover,
of time, used the multivariate statistical analysis techniques, we have already mentioned that the weights of the hidden
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layer affect all outputs. Investigations in statistics have Kanal, L., & Chandrasekaran, B. (1971). On dimensionality and sample
indicated that the common parameters are less important. size in statistical pattern classificatioRattern Recognition3, 238—

These two pecularities of the MLP deserves a more attentive Kharin, Yu. S. (1992).Robustness in Statistical Pattern Recognition
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