Bott Periodicity for Clifford Algebra Maniacs

Andrius Kulikauskas Math4Wisdom.com 2024.11.11

Clifford algebra

mutually anticommuting linear complex structures $J_1, J_2, J_3...$ imposing commutativity

time reversal T
$$T^2 = +1$$

charge conjugation C

$$C^2 = \pm 1$$

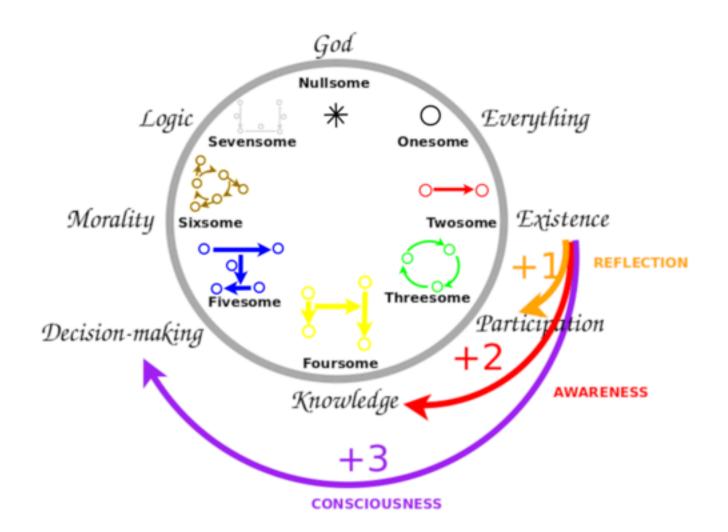
Clifford algebra

mutually anticommuting implicitly and explicitly complex operators

C, iC, iCT

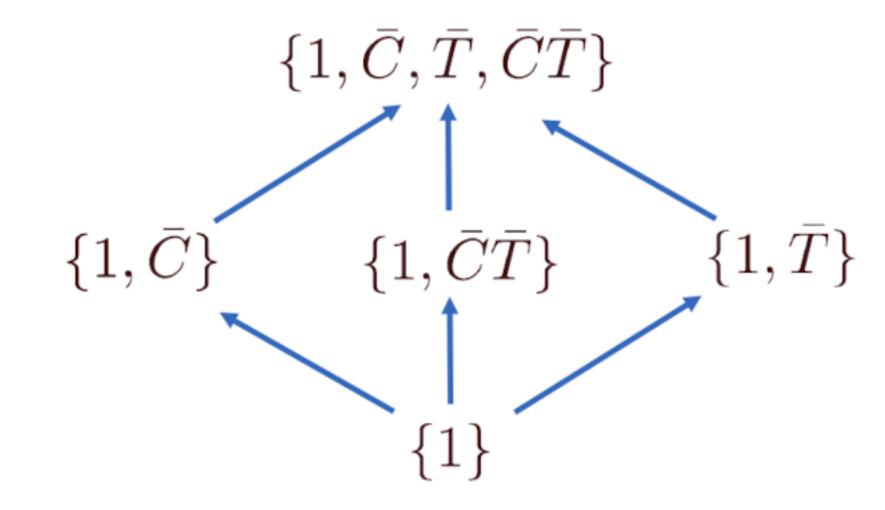
imposing structure: real, complex, quaternionic

Cognitive frameworks: Divisions of Everything



 $\mathbb{C}+\mathbb{C}e$

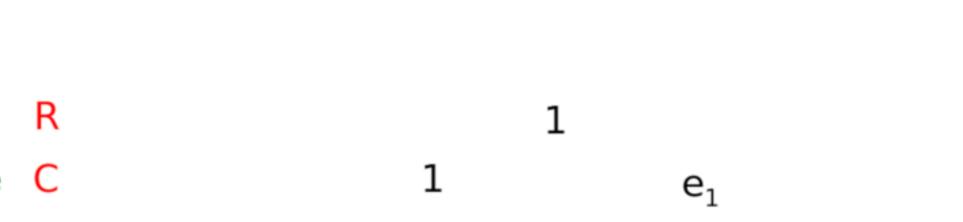
R+Re+ H+He-



$$3 \times 3 + 1 = 10$$

8+2=10

Clifford algebra generators



 e_1e_2 e_1, e_2

H+H e_1, e_2, e_3 e_1, e_2, e_1, e_2, e_3

 $e_1 e_2 e_3$

Multiplying Clifford algebra generators

$$-1 = e_1^2 = e_2^2 = e_3^2 \dots$$

$$e_1e_2=-e_2e_1$$

$$(e_1e_2)^2 = e_1e_2e_1e_2 = -e_1e_1e_2e_2 = -1$$

$$(e_1e_2e_3)^2 = e_1e_2e_3e_1e_2e_3 = e_1e_1e_2e_3e_2e_3 = -e_1e_1 = +1$$

7+3=10

$$egin{array}{lll} ext{Cliff}_0 &\simeq &\mathbb{R} \ ext{Cliff}_1 &\simeq &\mathbb{R}+\mathbb{R}e, &e^2=-1 \ ext{Cliff}_2 &\simeq &\mathbb{C}+\mathbb{C}e, &e^2=-1, ei=-ie \ ext{Cliff}_3 &\simeq &\mathbb{H}+\mathbb{H}e, &e^2=1, ei=ie, ej=je, ek=ke \ ext{Cliff}_4 &\simeq &\mathbb{H} \ ext{Cliff}_5 &\simeq &\mathbb{H}+\mathbb{H}e, &e^2=-1, ei=ie, ej=je, ek=ke \ ext{Cliff}_5 &\simeq &\mathbb{C}+\mathbb{C}e, &e^2=1, ei=-ie \ ext{Cliff}_6 &\simeq &\mathbb{C}+\mathbb{C}e, &e^2=1, ei=-ie \ ext{Cliff}_7 &\simeq &\mathbb{R}+\mathbb{R}e, &e^2=1 \ ext{Cliff}_7 &\simeq &\mathbb{R}+\mathbb{R}e, &e^2=$$

The key observation is that for any $a \in A$, there exists a unique $a' \in A$ such that

$$ae = ea'$$

and that the A-bimodule structure forces (ab)' = a'b'. Hence we have an automorphism (fixing the real field)

$$(-)':A\to A$$

and we can easily enumerate (up to isomorphism) the possibilities for associative division superalgebras over R:

- 1. $A = \mathbb{R}$. Here we can adjust e so that $e^2 := \langle e, e \rangle$ is either -1 or 1. The corresponding division superalgebras occur at 1 o'clock and 7 o'clock on the super Brauer clock.
- 2. $A = \mathbb{C}$. There are two \mathbb{R} -automorphisms $\mathbb{C} \to \mathbb{C}$. In the case where the automorphism is conjugation, condition (\star) for super associativity gives $\langle e, e \rangle e = e \langle e, e \rangle$ so that $\langle e, e \rangle$ must be *real*. Again e can be adjusted so that $\langle e, e \rangle$ equals -1 or 1. These possibilities occur at 2 o'clock and 6 o'clock on the super Brauer clock.

For the identity automorphism, we can adjust e so that $\langle e, e \rangle$ is 1. This gives the super algebra $\mathbb{C}[e]/\langle e^2 - 1 \rangle$ (where e commutes with elements in \mathbb{C}). This does not occur on the super Brauer clock over \mathbb{R} . However, it does generate the super Brauer group over \mathbb{C} (which is of order two).

3. $A=\mathbb{H}$. Here \mathbb{R} -automorphisms $\mathbb{H}\to\mathbb{H}$ are given by $h\mapsto xhx^{-1}$ for $x\in\mathbb{H}$. In other words

$$he = exhx^{-1}$$

whence ex commutes with all elements of $\mathbb H$ (i.e. we can assume wlog that the automorphism is the identity). The properties of the pairing guarantee that $h\langle e,e\rangle=\langle e,e\rangle h$ for all $h\in\mathbb H$, so $\langle e,e\rangle$ is real and again we can adjust e so that $\langle e,e\rangle$ equals 1 or -1. These cases occur at 3 o'clock and 5 o'clock on the super Brauer clock.

Chomsky hierarchy of automata

Finite automata: re=er implies e o er

Pushdown automata: $ce=ear{c}$ implies e o cec

Linear bounded Turing machine: hex=exh implies hhhhhhex
ightarrow exhhhhhh

Unbounded Turing machine: $e \rightarrow$

Bott Periodicity for Clifford Algebra Maniacs

Andrius Kulikauskas Math4Wisdom.com 2024.11.11

Clifford algebra

mutually anticommuting linear complex structures $J_1, J_2, J_3...$ imposing commutativity

time reversal T $T^2 = +1$

charge conjugation C

 $C^2 = \pm 1$

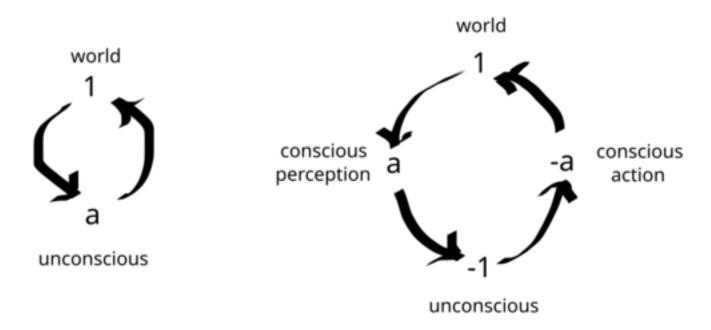
Clifford algebra

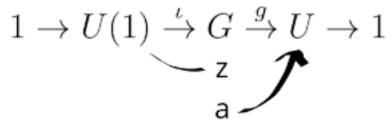
mutually anticommuting implicitly and explicitly complex operators

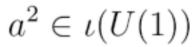
C, iC, iCT

imposing structure: real, complex, quaternionic

$$a^4 = 1$$
 implies $a^2 = \pm 1$







FOURSOME for Knowledge

recurring activity

structure

$$1 \to U(1) \xrightarrow{\iota} G \xrightarrow{g} U \to 1 \qquad U = \mathbb{Z}_2$$

$$z \xrightarrow{a}$$

$$a^2 \in \iota(U(1))$$

$$G \cong U(1) \times \mathbb{Z}_2$$

noncommutative $aza^{-1}=z^{-1}$ $az=z^{-1}a$ $a^{4}=1$

$$a^2=1$$
 $a^2=-1$ $Pin_+(2)$ $Pin_-(2)$ like dihedral like dicyclic

$$(\phi,\chi)$$
-representations of CT -groups

Identity: linear, even:
$$ho(I) = \left(egin{array}{cc} 1 & 0 \ 0 & 1 \end{array}
ight)$$

Time reversal, antilinear, even:
$$ho(ar{T})=egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix}$$

Charge conjugation, antilinear, odd:
$$ho(ar{C}) = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)$$

Parity, linear, odd:
$$ho(ar{CT}) = egin{pmatrix} 0 & -1 \ 1 & 0 \end{pmatrix}$$

Subgroup $U \subset M_{2,2}$	\tilde{T}^2	\tilde{C}^2	[Clifford]		
{1}			$[\mathbb{C}\ell_0] = [\mathbb{C}]$		

$\{1, \bar{S}\}$			$[\mathbb{C}\ell_1]$
$\{1, \bar{T}\}$	+1		$[C\ell_0] = [\mathbb{R}]$
$M_{2,2}$	+1	-1	$[C\ell_{-1}]$
$\{1, \bar{C}\}$		-1	$[C\ell_{-2}]$
$M_{2,2}$	-1	-1	$[C\ell_{-3}]$
$\{1, \bar{T}\}$	-1		$[C\ell_4] = [\mathbb{H}]$
$M_{2,2}$	-1	+1	$[C\ell_{+3}]$
$\{1, \bar{C}\}$		+1	$[C\ell_{+2}]$
$M_{2,2}$	+1	+1	$[C\ell_{+1}]$

Moore CT Groups

Stone, Roy, Chiu Symmetric spaces

Cartan	TRS	PHS	SLS	Hamiltonian $M = G/H$	Classifying Q
D	0	+1	0	$\mathrm{O}(16r) \times \mathrm{O}(16r)/\mathrm{O}(16r) \simeq \mathrm{O}(16r)$	R_2
DIII	-1	+1	1	O(16r)/U(8r)	R_3
AII	-1	0	0	U(8r)/Sp(4r)	R_4
CII	-1	-1	1	${\operatorname{Sp}(4r)/\operatorname{Sp}(2r)\times\operatorname{Sp}(2r)}\times\mathbb{Z}$	R_5
С	0	-1	0	$\mathrm{Sp}(2r)\times\mathrm{Sp}(2r)/\mathrm{Sp}(2r)\simeq\mathrm{Sp}(2r)$	R_6
CI	+1	-1	1	$\mathrm{Sp}(2r)/\mathrm{U}(2r)$	R_7
AI	+1	0	0	U(2r)/O(2r)	R_0
BDI	+1	+1	1	$\{\mathcal{O}(2r)/\mathcal{O}(r)\times\mathcal{O}(r)\}\times\mathbb{Z}$	R_1
D	0	+1	0	$\mathcal{O}(r) \times \mathcal{O}(r)/\mathcal{O}(r) \simeq \mathcal{O}(r)$	R_2

		-		
$C\ell_{+4}$	$\mathbb{H}(2)$	$\operatorname{End}(\mathbb{R}^{1 1})\widehat{\otimes}\mathbb{H}$	\mathbb{H}^2	$ ilde{\mu}^\pm$
$C\ell_{+3}$	$\mathbb{C}(2)$	$\mathbb{R}[arepsilon_{-}]\widehat{\otimes}\mathbb{H}$	\mathbb{C}^2	$\tilde{\eta}^3$
$C\ell_{+2}$	$\mathbb{R}(2)$	$\mathbb{C}[\varepsilon_+], z\varepsilon_+ = \varepsilon_+ \bar{z}$	\mathbb{R}^2	$\tilde{\eta}^2$
$C\ell_{+1}$	$\mathbb{R}\oplus\mathbb{R}$	$\mathbb{R}[arepsilon_+]$	$\mathbb{R}_{\pm}, \rho(e) = \pm 1$	$\tilde{\eta}$
$C\ell_0$	\mathbb{R}	\mathbb{R}	\mathbb{R}	$\mathbb{R}^{1 0}, \mathbb{R}^{0 1}$
$C\ell_{-1}$	\mathbb{C}	$\mathbb{R}[arepsilon_{-}]$	\mathbb{C}	η
$C\ell_{-2}$	IHI	$\mathbb{C}[\varepsilon_{-}], \ z\varepsilon_{-} = \varepsilon_{-}\bar{z}$	IHI	η^2
$C\ell_{-3}$	$\mathbb{H}\oplus\mathbb{H}$	$\mathbb{R}[\varepsilon_+]\widehat{\otimes}\mathbb{H}$	$\mathbb{H}_{\pm}, \rho(e_1 e_2 e_3) = \pm 1$	η^3

 $\operatorname{End}(\mathbb{R}^{1|1})\widehat{\otimes}\mathbb{H}$

Graded algebra

Ungraded irreps

 \mathbb{H}^2

Graded irreps

Clifford Algebra

 $C\ell_{-4}$

Ungraded algebra

 $\mathbb{H}(2)$

Notation

$$arepsilon \pm$$
 is odd and $arepsilon^2 \pm = \pm 1$

$$\eta=\mathbb{R}^{1|1}$$
 $ho(e)=\left(egin{array}{cc} 0 & -1 \ 1 & 0 \end{array}
ight)$ $ilde{\eta}=\mathbb{R}^{1|1}$ $ho(e)=\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight)$

$$\iota = \left(egin{array}{ccc} 0 & -1 \ 1 & 0 \end{array}
ight) \quad arphi = \left(egin{array}{ccc} 1 & 0 \ 0 & -1 \end{array}
ight) \quad \psi = \left(egin{array}{ccc} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \ -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{array}
ight)$$

Lie algebra decomposition $\mathfrak{g}=\mathfrak{h}+\mathfrak{m}$ where $[\mathfrak{h},\mathfrak{h}]\in\mathfrak{h},[\mathfrak{h},\mathfrak{m}]\in\mathfrak{m},[\mathfrak{m},\mathfrak{m}]\in\mathfrak{h}.$

$$m \in G/H$$

				symmetric space G/H	Hamil tonian	T^2C^2	T	C	Restrict
				$_{O(16r)\times O(16r)}/O(16r)$	$\iota \otimes m$	+1		$arphi \otimes \mathbb{I}$	
iCT	$C\ell_{+3}$	$J_1 = ext{diag}(\iota)$	$C\ell_{-1}$	O(16r)/U(8r)	$\iota\otimes m$	-1 +1	$arphi \otimes J_1$	φ	
CT?	$C\ell_4$	$J_2 = ext{diag}(\psi)$	$C\ell_{-2}$	U(8r)/Sp(4r)		-1	_		
iCT	$C\ell_{-3}$	$J_3^{-1} = \ I_1 J_1 J_2$	$C\ell_{-3}$	$Sp(4r)/{}_{Sp(2r) imes Sp(2r)}$	J_1m	-1 -1	J_3	J_2	
iC	$C\ell_{-2}$	$J_4^{-1} = L J_3$	$C\ell_{-4}$	$_{^{Sp(2r) imes Sp(2r)}}/Sp(2r)$	J_1m	-1		J_2	$J_1J_2J_3 = +1$
$\left. \begin{matrix} C \\ _{T=+1} \end{matrix} \right.$	$C\ell_{-1}$	$J_5^{-1} = \ I_2 J_1 J_4$	$C\ell_{-5}$	Sp(2r)/U(2r)	J_1m	+1 -1	$J_2J_4J_5$	J_2	
$ _{T=+1}$	$C\ell_0$	$J_6^{-1} = \ I_3 J_2 J_4$	$C\ell_{-6}$	$U(2r)/\mathcal{O}(2r)$	J_1m	+1	$J_3J_4J_6$ or $J_2J_4J_6$		$J_1J_4J_5 = +1$
$\left. \begin{matrix} C \\ _{T=+1} \end{matrix} \right.$	$C\ell_{+1}$	$J_7^{-1} = \ I_4 J_1 J_6$	$C\ell_{-7}$	$O(2r)/{\scriptscriptstyle O(r) imesO(r)}$	J_1m	+1 +1	$J_1J_6J_7$	$\overset{J_2J_4J_6}{\equiv}\varphi$	
iC	$C\ell_{+2}$	$J_8^{-1} = \ L_2 J_7$	$C\ell_{-8}$	$O(r) \times O(r) / O(r)$	J_1m	+1		$\mathop{\equiv}^{J_2J_4J_6}\varphi$	$J_2J_4J_6,J_1J_6J_7\ =+1$

UNCONSCIOUS concern for past SURVIVAL

CONSCIOUS concern for future

SECURITY

CONSCIOUSNESS concern in general SOCIAL

no concern

UNCONSCIOUS concern for past

SELF-ESTEEM

CONSCIOUS concern for future

FREEDOM

CONSCIOUSNESS concern in general

SELF-FULFILLMENT

UNCONSCIOUS concern for known past

CONSCIOUS concern for unknown future

Bott Periodicity for Clifford Algebra Maniacs

Andrius Kulikauskas Math4Wisdom.com 2024.11.11

Clifford algebra

mutually anticommuting linear complex structures $J_1, J_2, J_3...$ imposing commutativity

time reversal T
$$T^2 = +1$$

charge conjugation C $C^2 = +1$

Clifford algebra

mutually anticommuting implicitly and explicitly complex operators

C, iC, iCT

imposing structure: real, complex, quaternionic